login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112206
Coefficients of replicable function number "72b".
9
1, 1, 0, 2, 2, 1, 2, 2, 3, 4, 4, 4, 7, 7, 6, 10, 11, 11, 14, 16, 17, 21, 22, 24, 32, 34, 34, 44, 49, 50, 60, 66, 72, 84, 90, 98, 117, 125, 132, 156, 171, 181, 206, 226, 245, 277, 298, 322, 369, 397, 422, 480, 522, 557, 620, 674, 728, 807, 868, 936, 1043, 1121, 1198
OFFSET
0,4
COMMENTS
From Michael Somos, Oct 28 2019: (Start)
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Convolution squared is A112173.
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = f(t) where q = exp(2 Pi i t).
Given G.f. A(x), then B(q) = q^(-1) * A(q^6) satisifes 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = 2 + (u^2 - v)*v*w^2 + (u^2 + v)*v^2.
(End)
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
a(n) ~ exp(sqrt(2*n)*Pi/3) / (2^(5/4) * sqrt(3) * n^(3/4)). - Vaclav Kotesovec, Sep 08 2015
Expansion of q^(1/6)*((eta(q^2)*eta(q^6))^2/(eta(q)*eta(q^3)*eta(q^4) *eta(q^12))) in powers of q. - G. C. Greubel, Jun 01 2018
From Michael Somos, Oct 28 2019: (Start)
Expansion of chi(x) * chi(x^3) in powers of x where chi() is a Ramanujan theta function.
Euler transform of period 12 sequence [1, -1, 2, 0, 1, -2, 1, 0, 2, -1, 1, 0, ...].
G.f.: Product_{k>=0} (1 + x^(2*k + 1)) * (1 + x^(6*k + 3)).
a(n) = (-1)^n * A112175(n). a(2*n) = A328789(n). a(2*n + 1) = A328790(n).
(End)
EXAMPLE
G.f. = 1 + x + 2*x^3 + 2*x^4 + x^5 + 2*x^6 + 2*x^7 + 3*x^8 + ...
G.f. = q^-1 + q^5 + 2*q^17 + 2*q^23 + q^29 + 2*q^35 + 2*q^41 + ...
MATHEMATICA
nmax = 60; CoefficientList[Series[Product[(1 + x^k)*(1 + x^(3*k)) / ((1 + x^(2*k))*(1 + x^(6*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 08 2015 *)
eta[q_]:= q^(1/24)*QPochhammer[q]; h:= q^(1/6)*((eta[q^2]*eta[q^6])^2/(eta[q]*eta[q^3]*eta[q^4]*eta[q^12])); a:= CoefficientList[Series [h, {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 01 2018 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] QPochhammer[ -x^3, x^6], {x, 0 , n}]; (* Michael Somos, Oct 28 2019 *)
PROG
(PARI) q='q+O('q^50); h=((eta(q^2)*eta(q^6))^2/(eta(q)*eta(q^3)*eta(q^4) *eta(q^12))); Vec(h) \\ G. C. Greubel, Jun 01 2018
(PARI) {a(n) = my(A); if( n < 0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^6 + A))^2 / (eta(x + A) * eta(x^3 + A) * eta(x^4 + A) * eta(x^12 + A)), n))}; /* Michael Somos, Oct 28 2019 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Aug 28 2005
STATUS
approved