login
A328790
Expansion of (chi(x) / chi(-x^6))^2 in powers of x where chi() is a Ramanujan theta function.
4
1, 2, 1, 2, 4, 4, 7, 10, 11, 16, 21, 24, 34, 44, 50, 66, 84, 98, 125, 156, 181, 226, 277, 322, 397, 480, 557, 674, 807, 936, 1121, 1330, 1538, 1824, 2146, 2476, 2915, 3408, 3918, 4578, 5322, 6104, 7090, 8198, 9375, 10830, 12464, 14214, 16345, 18734, 21303
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Convolution square of A328796.
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 1/2 g(t) where q = exp(2 Pi i t) and g() is g.f. for A328797.
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-5/12) * (eta(q^2)^2 * eta(q^12))^2 / (eta(q) * eta(q^4) * eta(q^6))^2 in power of q.
Euler transform of period 12 sequence [2, -2, 2, 0, 2, 0, 2, 0, 2, -2, 2, 0, ...].
G.f.: Product_{k>=1} (1 + x^(2*k-1))^2 * (1 + x^(6*k))^2.
a(n) = A112206(2*n + 1).
a(n) ~ exp(2*Pi*sqrt(n)/3) / (4*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Oct 31 2019
EXAMPLE
G.f. = 1 + 2*x + x^2 + 2*x^3 + 4*x^4 + 4*x^5 + 7*x^6 + 10*x^7 + ...
G.f. = q^5 + 2*q^17 + q^29 + 2*q^41 + 4*q^53 + 4*q^65 + 7*q^77 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (QPochhammer[ -x, x^2] QPochhammer[ -x^6, x^6])^2, {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n < 0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 * eta(x^12 + A))^2 / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A))^2, n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Oct 27 2019
STATUS
approved