login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328790
Expansion of (chi(x) / chi(-x^6))^2 in powers of x where chi() is a Ramanujan theta function.
4
1, 2, 1, 2, 4, 4, 7, 10, 11, 16, 21, 24, 34, 44, 50, 66, 84, 98, 125, 156, 181, 226, 277, 322, 397, 480, 557, 674, 807, 936, 1121, 1330, 1538, 1824, 2146, 2476, 2915, 3408, 3918, 4578, 5322, 6104, 7090, 8198, 9375, 10830, 12464, 14214, 16345, 18734, 21303
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Convolution square of A328796.
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 1/2 g(t) where q = exp(2 Pi i t) and g() is g.f. for A328797.
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-5/12) * (eta(q^2)^2 * eta(q^12))^2 / (eta(q) * eta(q^4) * eta(q^6))^2 in power of q.
Euler transform of period 12 sequence [2, -2, 2, 0, 2, 0, 2, 0, 2, -2, 2, 0, ...].
G.f.: Product_{k>=1} (1 + x^(2*k-1))^2 * (1 + x^(6*k))^2.
a(n) = A112206(2*n + 1).
a(n) ~ exp(2*Pi*sqrt(n)/3) / (4*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Oct 31 2019
EXAMPLE
G.f. = 1 + 2*x + x^2 + 2*x^3 + 4*x^4 + 4*x^5 + 7*x^6 + 10*x^7 + ...
G.f. = q^5 + 2*q^17 + q^29 + 2*q^41 + 4*q^53 + 4*q^65 + 7*q^77 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (QPochhammer[ -x, x^2] QPochhammer[ -x^6, x^6])^2, {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n < 0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 * eta(x^12 + A))^2 / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A))^2, n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Oct 27 2019
STATUS
approved