login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A328788 Expansion of psi(x^6)^5/psi(-x^3) * (f(-x)/f(-x^4))^3 in powers of x where psi(), f() are Ramanujan theta functions. 1
0, 0, 0, 1, -3, 0, 6, 0, -9, 4, 0, 0, 3, 0, 0, 6, -21, 0, 24, 0, -18, 8, 0, 0, -3, 0, 0, 13, -24, 0, 36, 0, -45, 12, 0, 0, 21, 0, 0, 14, -54, 0, 48, 0, -36, 24, 0, 0, -15, 0, 0, 18, -42, 0, 78, 0, -72, 20, 0, 0, 18, 0, 0, 32, -93, 0, 72, 0, -54, 24, 0, 0, 15 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Number 125 of the 126 eta-quotients listed in Table 1 of Williams 2012.

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 144 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A329651.

LINKS

Table of n, a(n) for n=0..72.

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

K. S. Williams, Fourier series of a class of eta quotients, Int. J. Number Theory 8 (2012), no. 4, 993-1004.

FORMULA

Euler transform of period 12 sequence [-3, -3, -2, 0, -3, 2, -3, 0, -2, -3, -3, -4, ...].

Expansion of phi(-x^3) * f(-x^2, -x^10)^6 / f(x, x^5)^3 in powers of x where phi(), f(,) are Ramanujan theta functions.

Expansion of eta(q)^3 * eta(q^12)^9 / (eta(q^3) * eta(q^4)^3 * eta(q^6)^4) in powers of q.

G.f.: x^3 * Product_{n>=1} (1 - x^(3*n))^4 * (1 + x^n)^2 * (1 + x^(2*n))^6 * (1 - x^n + x^(2*n))^5 * (1 - x^(2*n) + x^(4*n))^9.

a(n) = s(n/3) - 3*s(n/4) + 3*s(n/6) - s(n/12) if n>0 where s(x) = sum of divisors of x for integer x else 0.

a(2*n + 1) = -3 * A229615(n). a(6*n + 1) = a(6*n + 5) = 0. a(6*n + 3) = A008438(n).

EXAMPLE

G.f. = x^3 - 3*x^4 + 6*x^6 - 9*x^8 + 4*x^9 + 3*x^12 + 6*x^15 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ 2^(-9/2) x^(-15/4) (EllipticTheta[ 2, 0, x^6]^5 / EllipticTheta[ 2, Pi/4, x^3]) (QPochhammer[ x^2] / QPochhammer[ x^8])^3 , {x, 0, n}] // PowerExpand;

PROG

(PARI) {a(n) = my(s = x -> if(frac(x), 0, sigma(x))); if( n<3, 0, s(n/3) - 3*s(n/4) + 3*s(n/6) - s(n/12));

(PARI) {a(n) = my(A); n-=3; if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^3 * eta(x^12 + A)^9 / (eta(x^3 + A) * eta(x^4 + A)^3 * eta(x^6 + A)^4), n))};

(MAGMA) A := Basis( ModularForms( Gamma0(12), 2), 72); A[4] - 3*A[5];

CROSSREFS

Cf. A000203, A008438, A229615, A329651.

Sequence in context: A161829 A290705 A115456 * A007386 A007385 A307644

Adjacent sequences:  A328785 A328786 A328787 * A328789 A328790 A328791

KEYWORD

sign

AUTHOR

Michael Somos, Oct 28 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 17:59 EST 2019. Contains 329960 sequences. (Running on oeis4.)