The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A328789 Expansion of (chi(x^3) / chi(-x^2))^2 in powers of x where chi() is a Ramanujan theta function. 5
 1, 0, 2, 2, 3, 4, 7, 6, 11, 14, 17, 22, 32, 34, 49, 60, 72, 90, 117, 132, 171, 206, 245, 298, 369, 422, 522, 620, 728, 868, 1043, 1198, 1439, 1688, 1962, 2304, 2717, 3114, 3668, 4258, 4909, 5698, 6627, 7566, 8788, 10112, 11574, 13310, 15317, 17410, 20010 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). Convolution square of A097242. G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 1/2 g(t) where q = exp(2 Pi i t) and g() is g.f. for A328795. LINKS Table of n, a(n) for n=0..50. Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of q^(1/12) * (eta(q^4) * eta(q^6)^2)^2 / (eta(q^2) * eta(q^3) * eta(q^12))^2 in powers of q. Euler transform of period 12 sequence [0, 2, 2, 0, 0, 0, 0, 0, 2, 2, 0, 0, ...]. G.f.: Product_{k>=1} (1 + x^(6*k - 3))^2 / (1 - x^(4*k - 2))^2. a(n) = A112206(2*n). a(n) ~ exp(2*Pi*sqrt(n)/3) / (4*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Oct 31 2019 EXAMPLE G.f. = 1 + 2*x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 7*x^6 + 6*x^7 + 11*x^8 + ... G.f. = q^-1 + 2*q^23 + 2*q^35 + 3*q^47 + 4*q^59 + 7*q^71 + 6*q^83 + ... MATHEMATICA a[ n_] := SeriesCoefficient[ (QPochhammer[ -x^2, x^2] QPochhammer[ -x^3, x^6])^2, {x, 0, n}]; PROG (PARI) {a(n) = my(A); if( n < 0, 0, A = x * O(x^n); polcoeff( (eta(x^4 + A) * eta(x^6 + A)^2)^2 / (eta(x^2 + A) * eta(x^3 + A) * eta(x^12 + A))^2, n))}; CROSSREFS Cf. A097242, A112206, A328795. Sequence in context: A088633 A213042 A114952 * A086969 A014692 A058670 Adjacent sequences: A328786 A328787 A328788 * A328790 A328791 A328792 KEYWORD nonn AUTHOR Michael Somos, Oct 27 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 05:37 EDT 2024. Contains 372807 sequences. (Running on oeis4.)