login
A007385
Number of strict 5th-order maximal independent sets in path graph.
(Formerly M2200)
0
0, 0, 0, 0, 0, 0, 1, 0, 3, 0, 6, 0, 10, 1, 15, 4, 21, 10, 28, 20, 37, 35, 50, 56, 70, 84, 101, 121, 148, 171, 217, 241, 315, 342, 451, 490, 638, 707, 896, 1022, 1256, 1473, 1765, 2111, 2492, 3007, 3535, 4263, 5030, 6028, 7164, 8520, 10195
OFFSET
1,9
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. Yanco and A. Bagchi, ``K-th order maximal independent sets in path and cycle graphs,'' J. Graph Theory, submitted, 1994, apparently unpublished.
FORMULA
Apparently a(n)= 3*a(n-2) -3*a(n-4) +a(n-6) +a(n-7) -2*a(n-9) +a(n-11) with g.f. -x^7/((x^7+x^2-1)*(x-1)^2*(1+x)^2). [From R. J. Mathar, Oct 30 2009]
a(n) = A007380(n) - b(n) where b(2*n+1) = 1 and b(2*n) = n+1.- Sean A. Irvine, Jan 02 2018
CROSSREFS
Cf. A007380.
Sequence in context: A115456 A328788 A007386 * A352610 A307644 A081978
KEYWORD
nonn
EXTENSIONS
More terms from Sean A. Irvine, Jan 02 2018
STATUS
approved