

A007388


5th order maximal independent sets in cycle graph.
(Formerly M0425)


3



0, 2, 3, 2, 5, 2, 7, 2, 9, 2, 11, 2, 13, 9, 15, 18, 17, 29, 19, 42, 28, 57, 46, 74, 75, 93, 117, 121, 174, 167, 248, 242, 341, 359, 462, 533, 629, 781, 871, 1122, 1230, 1584, 1763, 2213, 2544, 3084, 3666, 4314, 5250, 6077, 7463, 8621, 10547
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. Yanco and A. Bagchi, Kth order maximal independent sets in path and cycle graphs, J. Graph Theory, submitted, 1994, apparently unpublished.


LINKS

Table of n, a(n) for n=1..53.
R. Yanco, Letter and Email to N. J. A. Sloane, 1994
R. Yanco and A. Bagchi, Kth order maximal independent sets in path and cycle graphs, Unpublished manuscript, 1994. (Annotated scanned copy)


FORMULA

Empirical g.f.: x^2*(5*x^10+3*x^82*x^52*x^33*x2) / (x^7+x^21).  Colin Barker, Mar 29 2014
For n >= 13: a(n) = a(n2) + a(n7).  Sean A. Irvine, Jan 02 2018
a(n) = Sum_{j=0..floor((ng)/(2*g))} (2*n/(n2*(g2)*j(g2))) * Hypergeometric2F1([(n2g*jg)/2,(2j+1)], [1], 1), g = 7, n >= g and n an odd integer.  Richard Turk, Oct 14 2019


CROSSREFS

Cf. A001608, A007387, A007389.
Sequence in context: A248737 A141310 A007389 * A057815 A007387 A105222
Adjacent sequences: A007385 A007386 A007387 * A007389 A007390 A007391


KEYWORD

nonn


AUTHOR

N. J. A. Sloane, Mira Bernstein


EXTENSIONS

Typo in data (242 was inadvertently repeated) fixed by Colin Barker, Mar 29 2014
More terms from Sean A. Irvine, Jan 02 2018


STATUS

approved



