login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A007390
Number of strict (-1)st-order maximal independent sets in cycle graph.
(Formerly M3257)
0
0, 0, 0, 4, 5, 15, 21, 44, 66, 120, 187, 319, 507, 840, 1348, 2204, 3553, 5775, 9329, 15124, 24454, 39600, 64055, 103679, 167735, 271440, 439176, 710644, 1149821, 1860495, 3010317, 4870844, 7881162, 12752040, 20633203, 33385279, 54018483
OFFSET
1,4
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. Yanco and A. Bagchi, ``K-th order maximal independent sets in path and cycle graphs,'' J. Graph Theory, submitted, 1994.
FORMULA
a(n) = A000204(n) - b(n) where b(1) = 1, b(2*n+1) = 2*n+2, b(2*n) = 3. - Sean A. Irvine, Jan 02 2018
Conjectures from Colin Barker, Jun 14 2019: (Start)
G.f.: x^4*(4 + x - 2*x^2 - x^3) / ((1 - x)^2*(1 + x)^2*(1 - x - x^2)).
a(n) = a(n-1) + 3*a(n-2) - 2*a(n-3) - 3*a(n-4) + a(n-5) + a(n-6) for n>7.
(End)
CROSSREFS
Sequence in context: A002509 A230983 A100234 * A037955 A225121 A267991
KEYWORD
nonn
EXTENSIONS
a(18) corrected and more terms from Sean A. Irvine, Jan 02 2018
STATUS
approved