login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A037955
a(n) = binomial(n, floor(n/2)-1).
12
0, 0, 1, 1, 4, 5, 15, 21, 56, 84, 210, 330, 792, 1287, 3003, 5005, 11440, 19448, 43758, 75582, 167960, 293930, 646646, 1144066, 2496144, 4457400, 9657700, 17383860, 37442160, 67863915, 145422675, 265182525, 565722720, 1037158320, 2203961430, 4059928950, 8597496600, 15905368710, 33578000610, 62359143990
OFFSET
0,5
COMMENTS
Number of returns to the axis in all left factors of Dyck paths of length n. Example: a(4)=4 because in U(D)U(D), U(D)UU, UUD(D), UUDU, UUUD, and UUUU we have a total of 2+1+1+0+0+0=4 returns to the axis (shown between parentheses); here U=(1,1) and D=(1,-1). - Emeric Deutsch, Jun 06 2011
a(n) is the number of subsets of {1,2,...,n} that contain exactly 1 more even than odd elements. For example, a(6) = 15 and the 15 sets are {2}, {4}, {6}, {1,2,4}, {1,2,6}, {1,4,6}, {2,3,4}, {2,3,6}, {2,4,5}, {2,5,6}, {3,4,6}, {4,5,6}, {1,2,3,4,6}, {1,2,4,5,6}, {2,3,4,5,6}. - Enrique Navarrete, Dec 20 2019
LINKS
FORMULA
E.g.f.: Bessel_I(2,2*x) + Bessel_I(3,2*x). - Paul Barry, Feb 28 2006
G.f.: g(z) = z^2*c^3/(1-z*c), where c = (1-sqrt(1-4*z^2))/(2*z^2) is the Catalan function with argument z^2. - Emeric Deutsch, Jun 06 2011
(n+3)*(n-2)*a(n) +2*n*a(n-1) +4*n*(n-1)*a(n-2) = 0. - R. J. Mathar, Nov 30 2012
a(n) = binomial(n, (n-2)/2), n even; a(n) = binomial(n, (n-3)/2), n odd. - Enrique Navarrete, Dec 20 2019
MAPLE
seq(binomial(n, floor((n-2)/2)), n = 0..40);
MATHEMATICA
Table[Binomial[n, Floor[n/2-1]], {n, 0, 40}] (* Wesley Ivan Hurt, Oct 16 2013 *)
PROG
(PARI) vector(41, n, binomial(n-1, (n-3)\2) ) \\ G. C. Greubel, Dec 31 2019
(Magma) [Binomial(n, Floor((n-2)/2)): n in [0..40]]; // G. C. Greubel, Dec 31 2019
(Sage) [binomial(n, floor(n/2)-1) for n in (0..40)] # G. C. Greubel, Dec 31 2019
CROSSREFS
Sequence in context: A230983 A100234 A007390 * A225121 A267991 A225536
KEYWORD
nonn
STATUS
approved