The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A037952 a(n) = binomial(n, floor((n-1)/2)). 29
0, 1, 1, 3, 4, 10, 15, 35, 56, 126, 210, 462, 792, 1716, 3003, 6435, 11440, 24310, 43758, 92378, 167960, 352716, 646646, 1352078, 2496144, 5200300, 9657700, 20058300, 37442160, 77558760, 145422675, 300540195, 565722720, 1166803110, 2203961430, 4537567650 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
First differences of central binomial coefficients: a(n) = A001405(n+1) - A001405(n).
The maximum size of an intersecting (or proper) antichain on an n-set. - Vladeta Jovovic, Dec 27 2000
Number of ordered trees with n+1 edges, having root of degree at least 2 and nonroot nodes of outdegree 0 or 2. - Emeric Deutsch, Aug 02 2002
a(n)=number of Dyck (n+1)-paths that are symmetric but not prime. A prime Dyck path is one that returns to the x-axis only at its terminal point. For example a(3)=3 counts UDUUDDUD, UUDDUUDD, UDUDUDUD. - David Callan, Dec 09 2004
Number of involutions of [n+2] containing the pattern 132 exactly once. For example, a(3)=3 because we have 1'3'2'45, 42'5'13' and 52'4'3'1 (the entries corresponding to the pattern 132 are "primed"). - Emeric Deutsch, Nov 17 2005
Also number of ways to put n eggs in floor(n/2) baskets where order of the baskets matters and all baskets have at least 1 egg. - Ben Paul Thurston, Sep 30 2006
For n >= 1 the number of standard Young tableaux with shapes corresponding to partitions into at most 2 distinct parts. - Joerg Arndt, Oct 25 2012
It seems that 3, 4, 10, ... are Colbourn's Covering Array Numbers CAN(2,k,2). - Ryan Dougherty, May 27 2015
For n > 0: a(n) = A265848(n,0). - Reinhard Zumkeller, Dec 24 2015
Essentially the same as A007007. - Georg Fischer, Oct 02 2018
a(n) is the number of subsets of {1,2,...,n} that contain exactly 1 more odd than even elements. For example, for n = 6, a(6) = 15 and the 15 sets are {1}, {3}, {5}, {1,2,3}, {1,2,5}, {1,3,4}, {1,3,6}, {1,4,5}, {1,5,6}, {2,3,5}, {3,4,5}, {3,5,6}, {1,2,3,4,5}, {1,2,3,5,6}, {1,3,4,5,6}. - Enrique Navarrete, Dec 21 2019
a(n) is the number of lattice paths of n steps taken from the step set {U=(1,1), D=(1,-1)} that start at the origin, never go below the x-axis, and end strictly above the x-axis; more succinctly, proper left factors of Dyck paths. For example, a(3)=3 counts UUU, UUD, UDU, and a(4)=4 counts UUUU, UUUD, UUDU, UDUU. - David Callan and Emeric Deutsch, Jan 25 2021
LINKS
Cyril Banderier and Michael Wallner, Lattice paths with catastrophes, arXiv:1707.01931 [math.CO], 2017.
J.-L. Baril, Classical sequences revisited with permutations avoiding dotted pattern, Electronic Journal of Combinatorics, 18 (2011), #P178.
Jean-Luc Baril, Sergey Kirgizov, and Armen Petrossian, Dyck Paths with catastrophes modulo the positions of a given pattern, Australasian J. Comb. (2022) Vol. 84, No. 2, 398-418.
Jean-Luc Baril and José L. Ramírez, Fibonacci and Catalan paths in a wall, 2023.
C. J. Colbourn, Table of CAN(2, k, 2)
Emeric Deutsch, Ordered trees with prescribed root degrees, node degrees and branch lengths, Discrete Math., 282, 2004, 89-94.
O. Guibert and T. Mansour, Restricted 132-involutions, Sem. Lotharingien de Combinatoire, 48, 2002, Article B48a (Corollary 4.2).
M. Miyakawa, A. Nozaki, G. Pogosyan, and I. G. Rosenberg, A map from the lower-half of the n-Cube onto the (n-1)-Cube which preserves intersecting antichains, Discr. Appl. Math. 92 (2-3) (1999) 223-228.
M. van de Vel, Determination of msd(L^n), J. Algebraic Combin., 9 (1999), 161-171.
FORMULA
E.g.f.: BesselI(1, 2*x) + BesselI(2, 2*x). - Vladeta Jovovic, Apr 28 2003
O.g.f.: (1-sqrt(1-4x^2))/(x - 2x^2 + x*sqrt(1-4x^2)).
Convolution of A001405 and A126120 shifted right: g001405(x)*g126120(x) = g037952(x)/x. - Philippe Deléham, Mar 17 2007
D-finite with recurrence: (n+2)*a(n) + (-n-2)*a(n-1) + 2*(-2*n+1)*a(n-2) + 4*(n-2)*a(n-3) = 0. - R. J. Mathar, Jan 25 2013. Proved by Robert Israel, Nov 13 2014
a(n) = binomial(n, (n-2)/2) = A001791(n/2), n even; a(n) = binomial(n, (n+1)/2) = A001700((n-1)/2), n odd. - Enrique Navarrete, Dec 21 2019
A001405(n) = a(n) + A000108(n/2), where A(.)=0 for non-integer arguments. - R. J. Mathar, Sep 23 2021
a(n) = Sum_{m=1..n} A053121(n,m) [comment Callan-Deutsch]. - R. J. Mathar, Sep 23 2021
a(2n+1) = A000984(n+1)/2. - R. J. Mathar, Sep 23 2021
a(n) = Sum_{k=2..n} A143359(n,k). [Callan's 2004 comment]. - R. J. Mathar, Sep 24 2021
MAPLE
a:= n-> binomial(n, floor((n-1)/2)):
seq(a(n), n=0..35); # Alois P. Heinz, Sep 19 2017
MATHEMATICA
Table[ Binomial[n, Floor[n/2]], {n, 0, 35}]//Differences (* Jean-François Alcover, Jun 10 2013 *)
f[n_] := Binomial[n, Floor[(n-1)/2]]; Array[f, 35, 0] (* Robert G. Wilson v, Nov 13 2014 *)
PROG
(Haskell)
a037952 n = a037952_list !! n
a037952_list = zipWith (-) (tail a001405_list) a001405_list
-- Reinhard Zumkeller, Mar 04 2012
(PARI) a(n) = binomial(n, (n-1)\2); \\ Altug Alkan, Oct 03 2018
(Magma) [Binomial(n, Floor((n-1)/2)): n in [0..40]]; // G. C. Greubel, Jun 21 2022
(SageMath) [binomial(n, (n-1)//2) for n in (0..40)] # G. C. Greubel, Jun 21 2022
CROSSREFS
Cf. A007007, A032263, A014495 (partial sums), A001405 (partial sums + 1).
Cf. A265848.
Sequence in context: A307057 A188022 A007007 * A281903 A093512 A081160
KEYWORD
nonn
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 07:15 EDT 2024. Contains 372782 sequences. (Running on oeis4.)