|
|
A037952
|
|
a(n) = binomial(n, floor((n-1)/2)).
|
|
28
|
|
|
0, 1, 1, 3, 4, 10, 15, 35, 56, 126, 210, 462, 792, 1716, 3003, 6435, 11440, 24310, 43758, 92378, 167960, 352716, 646646, 1352078, 2496144, 5200300, 9657700, 20058300, 37442160, 77558760, 145422675, 300540195, 565722720, 1166803110, 2203961430
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
First differences of central binomial coefficients: a(n) = A001405(n+1) - A001405(n).
The maximum size of an intersecting (or proper) antichain on an n-set. - Vladeta Jovovic, Dec 27 2000
Number of ordered trees with n+1 edges, having root of degree at least 2 and nonroot nodes of outdegree 0 or 2. - Emeric Deutsch, Aug 02 2002
a(n)=number of Dyck (n+1)-paths that are symmetric but not prime. A prime Dyck path is one that returns to the x-axis only at its terminal point. For example a(3)=3 counts UDUUDDUD, UUDDUUDD, UDUDUDUD. - David Callan, Dec 09 2004
Number of involutions of [n+2] containing the pattern 132 exactly once. For example, a(3)=3 because we have 1'3'2'45, 42'5'13' and 52'4'3'1 (the entries corresponding to the pattern 132 are "primed"). - Emeric Deutsch, Nov 17 2005
Also number of ways to put n eggs in floor(n/2) baskets where order of the baskets matters and all baskets have at least 1 egg. - Ben Paul Thurston, Sep 30 2006
For n >= 1 the number of standard Young tableaux with shapes corresponding to partitions into at most 2 distinct parts. - Joerg Arndt, Oct 25 2012
It seems that 3, 4, 10, ... are Colbourn's Covering Array Numbers CAN(2,k,2). - Ryan Dougherty, May 27 2015
For n > 0: a(n) = A265848(n,0). - Reinhard Zumkeller, Dec 24 2015
Essentially the same as A007007. - Georg Fischer, Oct 02 2018
a(n) is the number of subsets of {1,2,...,n} that contain exactly 1 more odd than even elements. For example, for n = 6, a(6) = 15 and the 15 sets are {1}, {3}, {5}, {1,2,3}, {1,2,5}, {1,3,4}, {1,3,6}, {1,4,5}, {1,5,6}, {2,3,5}, {3,4,5}, {3,5,6}, {1,2,3,4,5}, {1,2,3,5,6}, {1,3,4,5,6}. - Enrique Navarrete, Dec 21 2019
a(n) is the number of lattice paths of n steps taken from the step set {U=(1,1), D=(1,-1)} that start at the origin, never go below the x-axis, and end strictly above the x-axis; more succinctly, proper left factors of Dyck paths. For example, a(3)=3 counts UUU, UUD, UDU, and a(4)=4 counts UUUU, UUUD, UUDU, UDUU. - David Callan and Emeric Deutsch, Jan 25 2021
|
|
LINKS
|
Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
Cyril Banderier and Michael Wallner, Lattice paths with catastrophes, arXiv:1707.01931 [math.CO], 2017.
J.-L. Baril, Classical sequences revisited with permutations avoiding dotted pattern, Electronic Journal of Combinatorics, 18 (2011), #P178.
Jean-Luc Baril, Sergey Kirgizov, and Armen Petrossian, Dyck Paths with catastrophes modulo the positions of a given pattern, Univ. de Bourgogne Franche-Comté, 2022.
C. J. Colbourn, Table of CAN(2, k, 2)
Emeric Deutsch, Ordered trees with prescribed root degrees, node degrees and branch lengths, Discrete Math., 282, 2004, 89-94.
O. Guibert and T. Mansour, Restricted 132-involutions, Sem. Lotharingien de Combinatoire, 48, 2002, Article B48a (Corollary 4.2).
M. Miyakawa, A. Nozaki, G. Pogosyan, and I. G. Rosenberg, A map from the lower-half of the n-Cube onto the (n-1)-Cube which preserves intersecting antichains, Discr. Appl. Math. 92 (2-3) (1999) 223-228.
M. van de Vel, Determination of msd(L^n), J. Algebraic Combin., 9 (1999), 161-171.
|
|
FORMULA
|
E.g.f.: BesselI(1, 2*x) + BesselI(2, 2*x). - Vladeta Jovovic, Apr 28 2003
O.g.f.: (1-sqrt(1-4x^2))/(x - 2x^2 + x*sqrt(1-4x^2)).
Convolution of A001405 and A126120 shifted right: g001405(x)*g126120(x) = g037952(x)/x. - Philippe Deléham, Mar 17 2007
D-finite with recurrence: (n+2)*a(n) + (-n-2)*a(n-1) + 2*(-2*n+1)*a(n-2) + 4*(n-2)*a(n-3) = 0. - R. J. Mathar, Jan 25 2013. Proved by Robert Israel, Nov 13 2014
a(n) = binomial(n, (n-2)/2) = A001791(n/2), n even; a(n) = binomial(n, (n+1)/2) = A001700((n-1)/2), n odd. - Enrique Navarrete, Dec 21 2019
A001405(n) = a(n) + A000108(n/2), where A(.)=0 for non-integer arguments. - R. J. Mathar, Sep 23 2021
a(n) = Sum_{m=1..n} A053121(n,m) [comment Callan-Deutsch]. - R. J. Mathar, Sep 23 2021
a(2n+1) = A000984(n+1)/2. - R. J. Mathar, Sep 23 2021
a(n) = Sum_{k=2..n} A143359(n,k). [Callan's 2004 comment]. - R. J. Mathar, Sep 24 2021
|
|
MAPLE
|
a:= n-> binomial(n, floor((n-1)/2)):
seq(a(n), n=0..35); # Alois P. Heinz, Sep 19 2017
|
|
MATHEMATICA
|
Table[ Binomial[n, Floor[n/2] ], {n, 0, 35}] // Differences (* Jean-François Alcover, Jun 10 2013 *)
f[n_] := Binomial[n, Floor[(n - 1)/2]]; Array[f, 35, 0] (* Robert G. Wilson v, Nov 13 2014 *)
|
|
PROG
|
(Haskell)
a037952 n = a037952_list !! n
a037952_list = zipWith (-) (tail a001405_list) a001405_list
-- Reinhard Zumkeller, Mar 04 2012
(PARI) a(n) = binomial(n, (n-1)\2); \\ Altug Alkan, Oct 03 2018
|
|
CROSSREFS
|
Cf. A007007, A032263, A014495 (partial sums), A001405 (partial sums + 1).
Cf. A051303, A051304, A051305, A051306, A051307.
Cf. A047171, A036256, A051920.
Cf. A265848.
Sequence in context: A307057 A188022 A007007 * A281903 A093512 A081160
Adjacent sequences: A037949 A037950 A037951 * A037953 A037954 A037955
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|