login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A037952
a(n) = binomial(n, floor((n-1)/2)).
29
0, 1, 1, 3, 4, 10, 15, 35, 56, 126, 210, 462, 792, 1716, 3003, 6435, 11440, 24310, 43758, 92378, 167960, 352716, 646646, 1352078, 2496144, 5200300, 9657700, 20058300, 37442160, 77558760, 145422675, 300540195, 565722720, 1166803110, 2203961430, 4537567650
OFFSET
0,4
COMMENTS
First differences of central binomial coefficients: a(n) = A001405(n+1) - A001405(n).
The maximum size of an intersecting (or proper) antichain on an n-set. - Vladeta Jovovic, Dec 27 2000
Number of ordered trees with n+1 edges, having root of degree at least 2 and nonroot nodes of outdegree 0 or 2. - Emeric Deutsch, Aug 02 2002
a(n)=number of Dyck (n+1)-paths that are symmetric but not prime. A prime Dyck path is one that returns to the x-axis only at its terminal point. For example a(3)=3 counts UDUUDDUD, UUDDUUDD, UDUDUDUD. - David Callan, Dec 09 2004
Number of involutions of [n+2] containing the pattern 132 exactly once. For example, a(3)=3 because we have 1'3'2'45, 42'5'13' and 52'4'3'1 (the entries corresponding to the pattern 132 are "primed"). - Emeric Deutsch, Nov 17 2005
Also number of ways to put n eggs in floor(n/2) baskets where order of the baskets matters and all baskets have at least 1 egg. - Ben Paul Thurston, Sep 30 2006
For n >= 1 the number of standard Young tableaux with shapes corresponding to partitions into at most 2 distinct parts. - Joerg Arndt, Oct 25 2012
It seems that 3, 4, 10, ... are Colbourn's Covering Array Numbers CAN(2,k,2). - Ryan Dougherty, May 27 2015
Essentially the same as A007007. - Georg Fischer, Oct 02 2018
a(n) is the number of subsets of {1,2,...,n} that contain exactly 1 more odd than even elements. For example, for n = 6, a(6) = 15 and the 15 sets are {1}, {3}, {5}, {1,2,3}, {1,2,5}, {1,3,4}, {1,3,6}, {1,4,5}, {1,5,6}, {2,3,5}, {3,4,5}, {3,5,6}, {1,2,3,4,5}, {1,2,3,5,6}, {1,3,4,5,6}. - Enrique Navarrete, Dec 21 2019
a(n) is the number of lattice paths of n steps taken from the step set {U=(1,1), D=(1,-1)} that start at the origin, never go below the x-axis, and end strictly above the x-axis; more succinctly, proper left factors of Dyck paths. For example, a(3)=3 counts UUU, UUD, UDU, and a(4)=4 counts UUUU, UUUD, UUDU, UDUU. - David Callan and Emeric Deutsch, Jan 25 2021
For n >= 3, a(n) is also the number of pinnacle sets in the (n-2)-Plummer-Toft graph. - Eric W. Weisstein, Sep 11 2024
LINKS
Cyril Banderier and Michael Wallner, Lattice paths with catastrophes, arXiv:1707.01931 [math.CO], 2017.
J.-L. Baril, Classical sequences revisited with permutations avoiding dotted pattern, Electronic Journal of Combinatorics, 18 (2011), #P178.
Jean-Luc Baril, Sergey Kirgizov, and Armen Petrossian, Dyck Paths with catastrophes modulo the positions of a given pattern, Australasian J. Comb. (2022) Vol. 84, No. 2, 398-418.
Jean-Luc Baril and José L. Ramírez, Fibonacci and Catalan paths in a wall, 2023.
C. J. Colbourn, Table of CAN(2, k, 2)
Emeric Deutsch, Ordered trees with prescribed root degrees, node degrees and branch lengths, Discrete Math., 282, 2004, 89-94.
O. Guibert and T. Mansour, Restricted 132-involutions, Sem. Lotharingien de Combinatoire, 48, 2002, Article B48a (Corollary 4.2).
M. Miyakawa, A. Nozaki, G. Pogosyan, and I. G. Rosenberg, A map from the lower-half of the n-Cube onto the (n-1)-Cube which preserves intersecting antichains, Discr. Appl. Math. 92 (2-3) (1999) 223-228.
M. van de Vel, Determination of msd(L^n), J. Algebraic Combin., 9 (1999), 161-171.
Eric Weisstein's World of Mathematics, Pinnacle Set.
Eric Weisstein's World of Mathematics, Plummer-Toft Graph.
FORMULA
E.g.f.: BesselI(1, 2*x) + BesselI(2, 2*x). - Vladeta Jovovic, Apr 28 2003
O.g.f.: (1-sqrt(1-4x^2))/(x - 2x^2 + x*sqrt(1-4x^2)).
Convolution of A001405 and A126120 shifted right: g001405(x)*g126120(x) = g037952(x)/x. - Philippe Deléham, Mar 17 2007
D-finite with recurrence: (n+2)*a(n) + (-n-2)*a(n-1) + 2*(-2*n+1)*a(n-2) + 4*(n-2)*a(n-3) = 0. - R. J. Mathar, Jan 25 2013. Proved by Robert Israel, Nov 13 2014
For n > 0: a(n) = A265848(n,0). - Reinhard Zumkeller, Dec 24 2015
a(n) = binomial(n, (n-2)/2) = A001791(n/2), n even; a(n) = binomial(n, (n+1)/2) = A001700((n-1)/2), n odd. - Enrique Navarrete, Dec 21 2019
From R. J. Mathar, Sep 23 2021: (Start)
A001405(n) = a(n) + A000108(n/2), where A(.)=0 for non-integer arguments.
a(n) = Sum_{m=1..n} A053121(n,m) [comment Callan-Deutsch].
a(2n+1) = A000984(n+1)/2. (End)
a(n) = Sum_{k=2..n} A143359(n,k). [Callan's 2004 comment]. - R. J. Mathar, Sep 24 2021
From Amiram Eldar, Sep 27 2024: (Start)
Sum_{n>=1} 1/a(n) = 1 + Pi/sqrt(3).
Sum_{n>=1} (-1)^(n+1)/a(n) = (3 - Pi/sqrt(3))/9. (End)
MAPLE
a:= n-> binomial(n, floor((n-1)/2)):
seq(a(n), n=0..35); # Alois P. Heinz, Sep 19 2017
MATHEMATICA
Table[ Binomial[n, Floor[n/2]], {n, 0, 35}]//Differences (* Jean-François Alcover, Jun 10 2013 *)
f[n_] := Binomial[n, Floor[(n-1)/2]]; Array[f, 35, 0] (* Robert G. Wilson v, Nov 13 2014 *)
PROG
(Haskell)
a037952 n = a037952_list !! n
a037952_list = zipWith (-) (tail a001405_list) a001405_list
-- Reinhard Zumkeller, Mar 04 2012
(PARI) a(n) = binomial(n, (n-1)\2); \\ Altug Alkan, Oct 03 2018
(Magma) [Binomial(n, Floor((n-1)/2)): n in [0..40]]; // G. C. Greubel, Jun 21 2022
(SageMath) [binomial(n, (n-1)//2) for n in (0..40)] # G. C. Greubel, Jun 21 2022
CROSSREFS
Cf. A007007, A032263, A014495 (partial sums), A001405 (partial sums + 1).
Cf. A265848.
Sequence in context: A307057 A188022 A007007 * A281903 A093512 A376816
KEYWORD
nonn
STATUS
approved