The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A032263 Number of ways to partition n labeled elements into 4 pie slices allowing the pie to be turned over; number of 2-element proper antichains of an n-element set. 24
0, 0, 0, 3, 30, 195, 1050, 5103, 23310, 102315, 437250, 1834503, 7597590, 31175235, 127067850, 515396703, 2083011870, 8396420955, 33779000850, 135696347703, 544527210150, 2183335871475, 8749027724250, 35043169903503, 140313869216430, 561679070838795 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
COMMENTS
A proper antichain is an antichain iff each two of its members have a nonempty intersection.
Let P(A) be the power set of an n-element set A. Then a(n+1) = the number of pairs of elements {x,y} of P(A) for which x and y are intersecting but for which x is not a subset of y and y is not a subset of x. This is just a different formulation of the alternative sequence description. - Ross La Haye, Jan 09 2008
LINKS
C. G. Bower, Transforms (2)
Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
FORMULA
"DIJ[ 4 ]" (bracelet, indistinct, labeled, 4 parts) transform of 1, 1, 1, 1, ...
3*S(n,4) = (4^n-4*3^n+6*2^n-4)/8. - R. J. Mathar, Feb 26 2008
G.f.: 3*x^4/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)). - Colin Barker, May 29 2012
a(n) = 3*A000453(n). - Alois P. Heinz, Jan 24 2018
E.g.f.: (exp(x) - 1)^4/8. - Stefano Spezia, Apr 06 2022
MAPLE
A032263 := proc(n) (4^n-4*3^n+6*2^n-4)/8 ; end: seq(A032263(n), n=1..20) ; # R. J. Mathar, Feb 26 2008
MATHEMATICA
CoefficientList[Series[(3x^4)/((1-x)(1-2x)(1-3x)(1-4x)), {x, 0, 40}], x] (* Harvey P. Dale, Feb 28 2013 *)
PROG
(Magma) I:=[0, 0, 0, 3]; [n le 4 select I[n] else 10*Self(n-1)-35*Self(n-2)+50*Self(n-3)-24*Self(n-4): n in [1..30]]; // Vincenzo Librandi, Oct 19 2013
(PARI) a(n)=([0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1; -24, 50, -35, 10]^(n-1)*[0; 0; 0; 3])[1, 1] \\ Charles R Greathouse IV, Feb 09 2017
CROSSREFS
Cf. A000453.
Sequence in context: A177727 A132413 A344907 * A003771 A121100 A203366
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
Alternative description from Vladeta Jovovic, Goran Kilibarda, Zoran Maksimovic
More terms from Vincenzo Librandi, Oct 19 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 13 22:21 EDT 2024. Contains 373391 sequences. (Running on oeis4.)