The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A177727 a(0)=1; a(n) = a(n-1) * Fibonacci(3+n) * Fibonacci(1+n) / (Fibonacci(n))^2, n > 1. 1
 1, 3, 30, 180, 1300, 8736, 60333, 412335, 2829310, 19384200, 132882696, 910735488, 6242420665, 42785803515, 293259265950, 2010026277756, 13776931957468, 94428478367520, 647222466507045, 4436128656563175, 30405678471399166 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Similar recurrences a(n) = a(n-1)*F(a0+n-1)*F(b0+n-1)/( F(n)*F(c0+n-1)) are: {a0,b0,c0} = {3,2,1) in A066258. {a0,b0,c0} = {3,1,1) in A001654. {a0,b0,c0} = {4,1,1) in A001655 and next for 5,6 as well. REFERENCES Harry Hochstadt, The Functions of Mathematical Physics, Dover, New York, 1986, p. 93. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Index entries for linear recurrences with constant coefficients, signature (5,15,-15,-5,1) FORMULA G.f.: ( -1+2*x ) / ( (x-1)*(x^2+3*x+1)*(x^2-7*x+1) ). - R. J. Mathar, Nov 17 2011 a(n) = A001656(n) - 2*A001656(n-1). - R. J. Mathar, Nov 17 2011 MAPLE with (combinat): A177727 := proc(n) if n = 0 then 1; else procname(n-1)*fibonacci(3+n)*fibonacci(1+n)/fibonacci(n)^2 ; end if; end proc: seq(A177727(n), n=0..10) ; # R. J. Mathar, Nov 17 2011 MATHEMATICA a0 = 4; b0 = 2; c0 = 1; a[0] = 1; a[n_] := a[n] = (Fibonacci[(a0 + n - 1)]*Fibonacci[( b0 + n - 1)]/(Fibonacci[n]*Fibonacci[(c0 + n - 1)]))*a[n - 1]; Table[a[n], {n, 0, 30}] LinearRecurrence[{5, 15, -15, -5, 1}, {1, 3, 30, 180, 1300}, 30] (* Vincenzo Librandi, Nov 18 2011 *) PROG (Magma) I:=[1, 3, 30, 180, 1300]; [n le 5 select I[n] else 5*Self(n-1)+15*Self(n-2)-15*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..30]]; // Vincenzo Librandi, Nov 18 2011 CROSSREFS Cf. A066258, A001654, A001655, A001656, A001657. Sequence in context: A013214 A013219 A013220 * A132413 A344907 A032263 Adjacent sequences: A177724 A177725 A177726 * A177728 A177729 A177730 KEYWORD nonn AUTHOR Roger L. Bagula, May 12 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 18 07:16 EDT 2024. Contains 372618 sequences. (Running on oeis4.)