login
A032262
Number of ways to partition n labeled elements into pie slices allowing the pie to be turned over.
2
1, 1, 2, 5, 17, 83, 557, 4715, 47357, 545963, 7087517, 102248075, 1622633597, 28091569643, 526858352477, 10641342978635, 230283190994237, 5315654682014123, 130370767029201437, 3385534663256976395
OFFSET
0,3
LINKS
C. G. Bower, Transforms (2)
FORMULA
a(n) = 2^(n-2) + A000670(n-1) for n >= 2. - N. J. A. Sloane, Jan 17 2008
a(n) = 2^(n-1) + Sum_{k >= 3} Stirling_2(n,k)*(k-1)!/2 for n >= 1. - N. J. A. Sloane, Jan 17 2008
"DIJ" (bracelet, indistinct, labeled) transform of 1, 1, 1, 1, ... (see Bower link).
E.g.f.: 1 + (g(x) + g(x)^2/2 - log(1-g(x)))/2 where g(x) = exp(x) - 1. - Andrew Howroyd, Sep 12 2018
EXAMPLE
For n = 4 we have the following "pies":
. 1
./ \
2 . 3 . 12 .. 12 . 123 .1234
.\ / .. / \ .(..)..(..)
. 4 .. 3--4 . 34 .. 4
.(3)....(6)...(3)..(4)...(1) Total a(4) = 17
MATHEMATICA
a[0] = a[1] = 1; a[n_] := 2^(n-2) + HurwitzLerchPhi[1/2, 1-n, 0]/2;
Array[a, 20, 0] (* Jean-François Alcover, Aug 26 2019 *)
PROG
(PARI) seq(n)={my(p=exp(x + O(x*x^n))-1); Vec(1 + serlaplace(p + p^2/2 - log(1-p))/2)} \\ Andrew Howroyd, Sep 12 2018
CROSSREFS
Row sums of triangle A133800.
Sequence in context: A098540 A079574 A363002 * A144259 A191799 A079805
KEYWORD
nonn
EXTENSIONS
Edited by N. J. A. Sloane, Jan 17 2008
a(0)=1 prepended by Andrew Howroyd, Sep 12 2018
STATUS
approved