OFFSET
0,3
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..200
C. G. Bower, Transforms (2)
FORMULA
a(n) = 2^(n-2) + A000670(n-1) for n >= 2. - N. J. A. Sloane, Jan 17 2008
a(n) = 2^(n-1) + Sum_{k >= 3} Stirling_2(n,k)*(k-1)!/2 for n >= 1. - N. J. A. Sloane, Jan 17 2008
"DIJ" (bracelet, indistinct, labeled) transform of 1, 1, 1, 1, ... (see Bower link).
E.g.f.: 1 + (g(x) + g(x)^2/2 - log(1-g(x)))/2 where g(x) = exp(x) - 1. - Andrew Howroyd, Sep 12 2018
EXAMPLE
For n = 4 we have the following "pies":
. 1
./ \
2 . 3 . 12 .. 12 . 123 .1234
.\ / .. / \ .(..)..(..)
. 4 .. 3--4 . 34 .. 4
.(3)....(6)...(3)..(4)...(1) Total a(4) = 17
MATHEMATICA
a[0] = a[1] = 1; a[n_] := 2^(n-2) + HurwitzLerchPhi[1/2, 1-n, 0]/2;
Array[a, 20, 0] (* Jean-François Alcover, Aug 26 2019 *)
PROG
(PARI) seq(n)={my(p=exp(x + O(x*x^n))-1); Vec(1 + serlaplace(p + p^2/2 - log(1-p))/2)} \\ Andrew Howroyd, Sep 12 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Jan 17 2008
a(0)=1 prepended by Andrew Howroyd, Sep 12 2018
STATUS
approved