login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188022
Expansion of x*(1+x) / (1-3*x^2-x^3).
1
0, 1, 1, 3, 4, 10, 15, 34, 55, 117, 199, 406, 714, 1417, 2548, 4965, 9061, 17443, 32148, 61390, 113887, 216318, 403051, 762841, 1425471, 2691574, 5039254, 9500193, 17809336, 33539833, 62928201, 118428835, 222324436, 418214706, 785402143, 1476968554
OFFSET
0,4
COMMENTS
Define the 4 X 4 tridiagonal unit-primitive matrix (see [Jeffery]) M=A_{9,1}=[0,1,0,0; 1,0,1,0; 0,1,0,1; 0,0,1,1]; then a(n)=[M^n]_(3,4)=[M^n]_(4,3).
FORMULA
a(n) = 3*a(n-2)+a(n-3).
a(n) = A187498(3*n+1).
a(n) = A052931(n-2)+A052931(n-1). - R. J. Mathar, Mar 22 2011
MATHEMATICA
LinearRecurrence[{0, 3, 1}, {0, 1, 1}, 36] (* or *)
CoefficientList[Series[x (1 + x)/(1 - 3 x^2 - x^3), {x, 0, 35}], x] (* Michael De Vlieger, Mar 10 2020 *)
CROSSREFS
Cf. A094832 (bisection), A094833 (bisection).
Sequence in context: A055720 A054184 A307057 * A007007 A037952 A281903
KEYWORD
nonn,easy
AUTHOR
L. Edson Jeffery, Mar 18 2011
STATUS
approved