login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094833
Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 9 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = 3, s(2n) = 5.
5
1, 4, 15, 55, 199, 714, 2548, 9061, 32148, 113887, 403051, 1425471, 5039254, 17809336, 62928201, 222324436, 785402143, 2774421135, 9800231959, 34617003682, 122274355596, 431893332397, 1525507797700, 5388281150223
OFFSET
1,2
COMMENTS
In general, a(n) = (2/m)*Sum_{r=1..m-1} sin(r*j*Pi/m)*sin(r*k*Pi/m)*(2*cos(r*Pi/m))^(2n) counts (s(0), s(1), ..., s(2n)) such that 0 < s(i) < m and |s(i)-s(i-1)| = 1 for i = 1,2,...,2n, s(0) = j, s(2n) = k.
FORMULA
a(n) = (2/9)*Sum_{r=1..8} sin(r*Pi/3)*sin(5*r*Pi/9)*(2*cos(r*Pi/9))^(2n).
a(n) = 6a(n-1) - 9a(n-2) + a(n-3).
G.f.: (-x+2x^2)/(-1 + 6x - 9x^2 + x^3).
a(n+1) = 3*a(n) + A094832(n-1). - Philippe Deléham, Mar 20 2007
a(n) = A094829(n+1) - 2*A094829(n). - R. J. Mathar, Nov 14 2019
MATHEMATICA
Rest@ CoefficientList[Series[(-x + 2 x^2)/(-1 + 6 x - 9 x^2 + x^3), {x, 0, 24}], x] (* Michael De Vlieger, Jul 02 2021 *)
CROSSREFS
Sequence in context: A268164 A291029 A126932 * A039717 A220948 A026013
KEYWORD
nonn,easy
AUTHOR
Herbert Kociemba, Jun 13 2004
STATUS
approved