OFFSET
0,2
COMMENTS
In general, a(n) = (2/m)*Sum_{r=1..m-1} sin(r*j*Pi/m)*sin(r*k*Pi/m)*(2*cos(r*Pi/m))^(2n+1) counts (s(0), s(1), ..., s(2n+1)) such that 0 < s(i) < m and |s(i)-s(i-1)| = 1 for i = 1,2,...,2n+1, s(0) = j, s(2n+1) = k.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..1824
Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
Index entries for linear recurrences with constant coefficients, signature (6,-9,1).
FORMULA
a(n+1) = 3*a(n) + A094833(n-1). - Philippe Deléham, Mar 18 2007
a(n) = (2/9)*Sum_{r=1..8} sin(r*Pi/3)*sin(4*r*Pi/9)*(2*cos(r*Pi/9))^(2n).
a(n) = 6a(n-1) - 9a(n-2) + a(n-3).
G.f.: (-1+3x-x^2)/(-1+6x-9x^2+x^3).
MATHEMATICA
LinearRecurrence[{6, -9, 1}, {1, 3, 10}, 30] (* Harvey P. Dale, May 18 2011 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Herbert Kociemba, Jun 13 2004
STATUS
approved