login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126932
Binomial transform of A127358.
5
1, 4, 15, 55, 199, 714, 2547, 9048, 32043, 113212, 399265, 1406079, 4946137, 17383162, 61048359, 214270215, 751691811, 2636004228, 9240836733, 32386215981, 113478349989, 397544907486, 1392493797765, 4876916883090, 17078574481941, 59802541979964
OFFSET
0,2
COMMENTS
Hankel transform is (-1)^n.
Row sums of the Riordan array ((1-2*x)/(1+x+x^2), x/(1+x+x^2))^(-1). - Paul Barry, Nov 06 2008
LINKS
Isaac DeJager, Madeleine Naquin, Frank Seidl, Colored Motzkin Paths of Higher Order, VERUM 2019.
FORMULA
a(n+1) = 3*a(n) + A059738(n) with a(0)=1.
G.f: (sqrt(1-2*x-3*x^2) + 3*(1-3*x))/(2*(2-13*x+21*x^2)). - Paul Barry, Nov 06 2008
Conjecture: +2*n*a(n) -11*n*a(n-1) +4*(2*n+3)*a(n-2) +21*(n-2)*a(n-3)=0. - R. J. Mathar, Nov 24 2012
a(n) ~ 3 * 7^n / 2^(n+1). - Vaclav Kotesovec, Feb 12 2014
MAPLE
seq(coeff(series( (sqrt(1-2*x-3*x^2) + 3*(1-3*x))/(2*(2-13*x+21*x^2)), x, n+1), x, n), n = 0..30); # G. C. Greubel, Jan 29 2020
MATHEMATICA
CoefficientList[Series[(Sqrt[-3*x^2-2*x+1]-3*(3*x-1))/(2*(21*x^2-13*x+2)), {x, 0, 30}], x] (* Vaclav Kotesovec, Feb 12 2014 *)
PROG
(PARI) my(x='x+O('x^30)); Vec( (sqrt(1-2*x-3*x^2) + 3*(1-3*x))/(2*(2-13*x+21*x^2)) ) \\ G. C. Greubel, Jan 29 2020
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (Sqrt(1-2*x-3*x^2) + 3*(1-3*x))/(2*(2-13*x+21*x^2)) )); // G. C. Greubel, Jan 29 2020
(Sage)
def A126932_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (sqrt(1-2*x-3*x^2) + 3*(1-3*x))/(2*(2-13*x+21*x^2)) ).list()
A126932_list(30) # G. C. Greubel, Jan 29 2020
CROSSREFS
Sequence in context: A219603 A268164 A291029 * A094833 A039717 A220948
KEYWORD
nonn
AUTHOR
Philippe Deléham, Mar 17 2007
EXTENSIONS
Corrected and extended by Vincenzo Librandi, Feb 13 2014
STATUS
approved