login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188021
Expansion of (x^2)/[(1-x)*(1-3*x^2-x^3)].
2
0, 0, 1, 1, 4, 5, 14, 20, 48, 75, 165, 274, 571, 988, 1988, 3536, 6953, 12597, 24396, 44745, 85786, 158632, 302104, 561683, 1064945, 1987154, 3756519, 7026408, 13256712, 24835744, 46796545, 87763945, 165225380, 310088381, 583440086, 1095490524
OFFSET
0,5
COMMENTS
Sequence is related to rhombus substitution tilings. For the tridiagonal unit-primitive matrix U_1= (0 1 0 0)
(1 0 1 0)
(0 1 0 1)
(0 0 1 1),
let M=(m_(i,j))=(U_1)^n, i,j=1,2,3,4. Then a(n) = m_(2,4).
FORMULA
a(n)=a(n-1)+3*a(n-2)-2*a(n-3)-a(n-4), for n>=4, with {a(k)}={0,0,1,1}, k=0,1,2,3.
a(n)=A187498(3*n).
G.f.: x^2/(1 - x - 3*x^2 + 2*x^3 + x^4) -Michael De Vlieger, Aug 21 2019
MATHEMATICA
LinearRecurrence[{1, 3, -2, -1}, {0, 0, 1, 1}, 40] (* Harvey P. Dale, Jan 26 2013 *)
CROSSREFS
Sequence in context: A041089 A042321 A050164 * A191790 A246984 A306897
KEYWORD
nonn
AUTHOR
L. Edson Jeffery, Mar 18 2011
STATUS
approved