login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (x^2)/[(1-x)*(1-3*x^2-x^3)].
2

%I #18 Aug 21 2019 16:17:18

%S 0,0,1,1,4,5,14,20,48,75,165,274,571,988,1988,3536,6953,12597,24396,

%T 44745,85786,158632,302104,561683,1064945,1987154,3756519,7026408,

%U 13256712,24835744,46796545,87763945,165225380,310088381,583440086,1095490524

%N Expansion of (x^2)/[(1-x)*(1-3*x^2-x^3)].

%C Sequence is related to rhombus substitution tilings. For the tridiagonal unit-primitive matrix U_1= (0 1 0 0)

%C (1 0 1 0)

%C (0 1 0 1)

%C (0 0 1 1),

%C let M=(m_(i,j))=(U_1)^n, i,j=1,2,3,4. Then a(n) = m_(2,4).

%H Michael De Vlieger, <a href="/A188021/b188021.txt">Table of n, a(n) for n = 0..3651</a>

%H Genki Shibukawa, <a href="https://arxiv.org/abs/1907.00334">New identities for some symmetric polynomials and their applications</a>, arXiv:1907.00334 [math.CA], 2019.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,3,-2,-1).

%F a(n)=a(n-1)+3*a(n-2)-2*a(n-3)-a(n-4), for n>=4, with {a(k)}={0,0,1,1}, k=0,1,2,3.

%F a(n)=A187498(3*n).

%F G.f.: x^2/(1 - x - 3*x^2 + 2*x^3 + x^4) -_Michael De Vlieger_, Aug 21 2019

%t LinearRecurrence[{1,3,-2,-1},{0,0,1,1},40] (* _Harvey P. Dale_, Jan 26 2013 *)

%K nonn

%O 0,5

%A _L. Edson Jeffery_, Mar 18 2011