The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A191790 Number of base pyramids in all length n left factors of Dyck paths. 2
 0, 0, 1, 1, 4, 5, 14, 20, 49, 76, 175, 286, 637, 1078, 2353, 4081, 8788, 15521, 33098, 59279, 125476, 227239, 478192, 873885, 1830270, 3370029, 7030570, 13027729, 27088870, 50469889, 104647630, 195892564, 405187825, 761615284, 1571990935, 2965576714, 6109558585, 11563073314 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS A base pyramid is a factor of the form U^j D^j (j>0), starting at the horizontal axis (here U=(1,1) and D=(1,-1)). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 FORMULA a(n) = Sum_{k>=0} k*A191788(n,k). G.f.: z^2*c^2/((1-z^2)*(1-z*c)), where c=(1-sqrt(1-4*z^2))/(2*z^2). a(n) ~ 2^(n+3/2)/(3*sqrt(Pi*n)). - Vaclav Kotesovec, Mar 21 2014 a(n) = Sum_{k=0..n/2}((Sum_{j=ceiling(n/2)-k+1..2*(n-2*k)}(((2*j+2*k-n))*binomial(n-2*k-1,n-2*k-j)/j))). - Vladimir Kruchinin, Mar 04 2016 Conjecture: (n+1)*a(n) +(-n-1)*a(n-1) +5*(-n+1)*a(n-2) +(5*n-11)*a(n-3) +2*(2*n-3)*a(n-4) +4*(-n+3)*a(n-5)=0. - R. J. Mathar, Jun 14 2016 Conjecture: -(n+1)*(n-2)*a(n) +2*(n-1)*a(n-1) +(5*n-3)*(n-2)*a(n-2) +2*(-n+1)*a(n-3) -4*(n-1)*(n-2)*a(n-4)=0. - R. J. Mathar, Jun 14 2016 EXAMPLE a(4)=4 because in UUDU, UUUD, UUUU, (UD)(UD), (UD)UU, and (UUDD) we have 0 + 0 + 0 + 2 + 1 + 1 = 4 base pyramids (shown between parentheses). MAPLE c := ((1-sqrt(1-4*z^2))*1/2)/z^2: g := z^2*c^2/((1-z^2)*(1-z*c)): gser := series(g, z = 0, 40): seq(coeff(gser, z, n), n = 0 .. 37); MATHEMATICA CoefficientList[Series[x^2*(((1-Sqrt[1-4*x^2])*1/2)/x^2)^2/((1-x^2)*(1-x*((1-Sqrt[1-4*x^2])*1/2)/x^2)), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 21 2014 *) PROG (Maxima) a(n):=sum((sum(((2*j+2*k-n))*binomial(n-2*k-1, n-2*k-j)/j, j, ceiling(n/2)-k+1, 2*(n-2*k))), k, 0, n/2); /* Vladimir Kruchinin, Mar 04 2016 */ (PARI) x='x+O('x^50); concat([0, 0], Vec((1-2*x^2 - sqrt(1-4*x^2))/(x*(1-x^2)*(2*x-1 + sqrt(1-4*x^2))))) \\ G. C. Greubel, Mar 27 2017 CROSSREFS Cf. A191788. Sequence in context: A042321 A050164 A188021 * A246984 A306897 A348889 Adjacent sequences: A191787 A191788 A191789 * A191791 A191792 A191793 KEYWORD nonn AUTHOR Emeric Deutsch, Jun 18 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 27 02:41 EDT 2024. Contains 372847 sequences. (Running on oeis4.)