login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191787
Number of triple-rises in all length n left factors of Dyck paths (triple-rise = three consecutive (1,1)-steps).
2
0, 0, 0, 1, 3, 8, 19, 43, 96, 206, 447, 936, 1998, 4128, 8718, 17865, 37446, 76322, 159079, 323020, 670350, 1357496, 2807370, 5673526, 11699768, 23607548, 48567174, 97877248, 200954796, 404584032, 829226364, 1668147573, 3413853906, 6863065482, 14026671159, 28182987108
OFFSET
0,5
LINKS
FORMULA
a(n) = Sum_{k>=0} k*A191785(n,k).
G.f.: (1-6*z^2-z^3+8*z^4+4*z^5-(1-4*z^2-z^3)*sqrt(1-4*z^2))/(2*z*(1+2*z)*(1-2*z)^2).
a(n) ~ 2^(n-5/2)*sqrt(n)/sqrt(Pi) * (1 + 3*sqrt(Pi)/sqrt(2*n)). - Vaclav Kotesovec, Mar 21 2014
D-finite with recurrence +(n+1)*(n^3-3*n^2-62*n+192)*a(n) -2*(n^4-2*n^3-81*n^2+186*n+192)*a(n-1) -4*(n^4-3*n^3-49*n^2+267*n-384)*a(n-2) +8*(n-3)*(n^3-65*n+128)*a(n-3)=0. - R. J. Mathar, Jun 14 2016
EXAMPLE
a(4)=3 because in UDUD, UDUU, UUDD, UUDU, (UUU)D, and (U[UU)U] we have a total of 0 + 0 + 0 + 0 +1 + 2 = 3 triple-rises (shown between parentheses).
MAPLE
G := ((1-6*z^2-z^3+8*z^4+4*z^5-(1-4*z^2-z^3)*sqrt(1-4*z^2))*1/2)/(z*(1+2*z)*(1-2*z)^2): Gser := series(G, z = 0, 40): seq(coeff(Gser, z, n), n = 0 .. 35);
MATHEMATICA
CoefficientList[Series[((1-6*x^2-x^3+8*x^4+4*x^5-(1-4*x^2-x^3)*Sqrt[1-4*x^2])*1/2)/(x*(1+2*x)*(1-2*x)^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 21 2014 *)
PROG
(PARI) z='z+O('z^50); concat([0, 0, 0], Vec((1-6*z^2-z^3+8*z^4+4*z^5-(1-4*z^2-z^3)*sqrt(1-4*z^2))/(2*z*(1+2*z)*(1-2*z)^2))) \\ G. C. Greubel, Mar 27 2017
CROSSREFS
Sequence in context: A102712 A054480 A371796 * A347310 A332719 A326599
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jun 18 2011
STATUS
approved