OFFSET
0,3
COMMENTS
a(n)=A191785(n,0).
FORMULA
G.f.: g(z) = 2*(1+z+z^2)/(1-z^2-2*z^3+sqrt(1-2*z^2-3*z^4)).
a(n) ~ 3^((n+3)/2) * (11+6*sqrt(3) + (11-6*sqrt(3))*(-1)^n) / (2*n^(3/2)* sqrt(2*Pi)). - Vaclav Kotesovec, Mar 21 2014
Conjecture: -(n+3)*(13*n-70)*a(n) +(-13*n^2+19*n-102)*a(n-1) +(65*n^2-221*n-516) *a(n-2) +(65*n^2-197*n+288)*a(n-3) -(n+6)*(13*n-97) *a(n-4) +3*(-13*n^2+35*n-70) *a(n-5) +(-169*n^2+1201*n-2208) *a(n-6) -9*(13*n-40)*(n-5) *a(n-7) -6*(13*n-25)*(n-6) *a(n-8)=0. - R. J. Mathar, Jun 14 2016
EXAMPLE
a(4)=4 because we have UDUD, UDUU, UUDD, and UUDU, where U=(1,1), D=(1,-1); the paths UUUD and UUUU do not qualify.
MAPLE
g := (2*(1+z+z^2))/(1-z^2-2*z^3+sqrt(1-2*z^2-3*z^4)): gser := series(g, z = 0, 45): seq(coeff(gser, z, n), n = 0 .. 40);
MATHEMATICA
CoefficientList[Series[(2*(1+x+x^2))/(1-x^2-2*x^3+Sqrt[1-2*x^2-3*x^4]), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 21 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jun 18 2011
STATUS
approved