login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191786
Number of length n left factors of Dyck paths having no triple-rises (triple-rise = three consecutive (1,1)-steps).
1
1, 1, 2, 2, 4, 5, 9, 12, 22, 30, 55, 77, 141, 201, 368, 532, 974, 1424, 2607, 3847, 7043, 10474, 19176, 28707, 52559, 79133, 144888, 219234, 401420, 610073, 1117093, 1704380, 3120974, 4778408, 8750295, 13439431, 24611355, 37907920, 69422324, 107205933, 196336893
OFFSET
0,3
COMMENTS
a(n)=A191785(n,0).
FORMULA
G.f.: g(z) = 2*(1+z+z^2)/(1-z^2-2*z^3+sqrt(1-2*z^2-3*z^4)).
a(n) ~ 3^((n+3)/2) * (11+6*sqrt(3) + (11-6*sqrt(3))*(-1)^n) / (2*n^(3/2)* sqrt(2*Pi)). - Vaclav Kotesovec, Mar 21 2014
Conjecture: -(n+3)*(13*n-70)*a(n) +(-13*n^2+19*n-102)*a(n-1) +(65*n^2-221*n-516) *a(n-2) +(65*n^2-197*n+288)*a(n-3) -(n+6)*(13*n-97) *a(n-4) +3*(-13*n^2+35*n-70) *a(n-5) +(-169*n^2+1201*n-2208) *a(n-6) -9*(13*n-40)*(n-5) *a(n-7) -6*(13*n-25)*(n-6) *a(n-8)=0. - R. J. Mathar, Jun 14 2016
EXAMPLE
a(4)=4 because we have UDUD, UDUU, UUDD, and UUDU, where U=(1,1), D=(1,-1); the paths UUUD and UUUU do not qualify.
MAPLE
g := (2*(1+z+z^2))/(1-z^2-2*z^3+sqrt(1-2*z^2-3*z^4)): gser := series(g, z = 0, 45): seq(coeff(gser, z, n), n = 0 .. 40);
MATHEMATICA
CoefficientList[Series[(2*(1+x+x^2))/(1-x^2-2*x^3+Sqrt[1-2*x^2-3*x^4]), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 21 2014 *)
CROSSREFS
Sequence in context: A001224 A102526 A050192 * A007147 A230380 A127968
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jun 18 2011
STATUS
approved