The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A191786 Number of length n left factors of Dyck paths having no triple-rises (triple-rise = three consecutive (1,1)-steps). 1
1, 1, 2, 2, 4, 5, 9, 12, 22, 30, 55, 77, 141, 201, 368, 532, 974, 1424, 2607, 3847, 7043, 10474, 19176, 28707, 52559, 79133, 144888, 219234, 401420, 610073, 1117093, 1704380, 3120974, 4778408, 8750295, 13439431, 24611355, 37907920, 69422324, 107205933, 196336893 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
a(n)=A191785(n,0).
LINKS
FORMULA
G.f.: g(z) = 2*(1+z+z^2)/(1-z^2-2*z^3+sqrt(1-2*z^2-3*z^4)).
a(n) ~ 3^((n+3)/2) * (11+6*sqrt(3) + (11-6*sqrt(3))*(-1)^n) / (2*n^(3/2)* sqrt(2*Pi)). - Vaclav Kotesovec, Mar 21 2014
Conjecture: -(n+3)*(13*n-70)*a(n) +(-13*n^2+19*n-102)*a(n-1) +(65*n^2-221*n-516) *a(n-2) +(65*n^2-197*n+288)*a(n-3) -(n+6)*(13*n-97) *a(n-4) +3*(-13*n^2+35*n-70) *a(n-5) +(-169*n^2+1201*n-2208) *a(n-6) -9*(13*n-40)*(n-5) *a(n-7) -6*(13*n-25)*(n-6) *a(n-8)=0. - R. J. Mathar, Jun 14 2016
EXAMPLE
a(4)=4 because we have UDUD, UDUU, UUDD, and UUDU, where U=(1,1), D=(1,-1); the paths UUUD and UUUU do not qualify.
MAPLE
g := (2*(1+z+z^2))/(1-z^2-2*z^3+sqrt(1-2*z^2-3*z^4)): gser := series(g, z = 0, 45): seq(coeff(gser, z, n), n = 0 .. 40);
MATHEMATICA
CoefficientList[Series[(2*(1+x+x^2))/(1-x^2-2*x^3+Sqrt[1-2*x^2-3*x^4]), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 21 2014 *)
CROSSREFS
Sequence in context: A001224 A102526 A050192 * A007147 A230380 A127968
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jun 18 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 13:40 EDT 2024. Contains 372763 sequences. (Running on oeis4.)