The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A191786 Number of length n left factors of Dyck paths having no triple-rises (triple-rise = three consecutive (1,1)-steps). 1
 1, 1, 2, 2, 4, 5, 9, 12, 22, 30, 55, 77, 141, 201, 368, 532, 974, 1424, 2607, 3847, 7043, 10474, 19176, 28707, 52559, 79133, 144888, 219234, 401420, 610073, 1117093, 1704380, 3120974, 4778408, 8750295, 13439431, 24611355, 37907920, 69422324, 107205933, 196336893 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS a(n)=A191785(n,0). LINKS Table of n, a(n) for n=0..40. FORMULA G.f.: g(z) = 2*(1+z+z^2)/(1-z^2-2*z^3+sqrt(1-2*z^2-3*z^4)). a(n) ~ 3^((n+3)/2) * (11+6*sqrt(3) + (11-6*sqrt(3))*(-1)^n) / (2*n^(3/2)* sqrt(2*Pi)). - Vaclav Kotesovec, Mar 21 2014 Conjecture: -(n+3)*(13*n-70)*a(n) +(-13*n^2+19*n-102)*a(n-1) +(65*n^2-221*n-516) *a(n-2) +(65*n^2-197*n+288)*a(n-3) -(n+6)*(13*n-97) *a(n-4) +3*(-13*n^2+35*n-70) *a(n-5) +(-169*n^2+1201*n-2208) *a(n-6) -9*(13*n-40)*(n-5) *a(n-7) -6*(13*n-25)*(n-6) *a(n-8)=0. - R. J. Mathar, Jun 14 2016 EXAMPLE a(4)=4 because we have UDUD, UDUU, UUDD, and UUDU, where U=(1,1), D=(1,-1); the paths UUUD and UUUU do not qualify. MAPLE g := (2*(1+z+z^2))/(1-z^2-2*z^3+sqrt(1-2*z^2-3*z^4)): gser := series(g, z = 0, 45): seq(coeff(gser, z, n), n = 0 .. 40); MATHEMATICA CoefficientList[Series[(2*(1+x+x^2))/(1-x^2-2*x^3+Sqrt[1-2*x^2-3*x^4]), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 21 2014 *) CROSSREFS Cf. A191785 Sequence in context: A001224 A102526 A050192 * A007147 A230380 A127968 Adjacent sequences: A191783 A191784 A191785 * A191787 A191788 A191789 KEYWORD nonn AUTHOR Emeric Deutsch, Jun 18 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 13:40 EDT 2024. Contains 372763 sequences. (Running on oeis4.)