login
A102526
Antidiagonal sums of Losanitsch's triangle (A034851).
6
1, 1, 2, 2, 4, 5, 9, 12, 21, 30, 51, 76, 127, 195, 322, 504, 826, 1309, 2135, 3410, 5545, 8900, 14445, 23256, 37701, 60813, 98514, 159094, 257608, 416325, 673933, 1089648, 1763581, 2852242, 4615823, 7466468, 12082291, 19546175, 31628466
OFFSET
0,3
COMMENTS
This is an interleaving of A005207 and A051450. Thus a(2*m) = A005207(m) = (F(2*m-1) + F(m+1)) / 2, a(2*m - 1) = A051450(m) = (F(2*m) + F(m)) / 2 where F() are Fibonacci numbers (A000045). - Max Alekseyev, Jun 28 2006
The Kn11(n) and Kn21(n) sums, see A180662 for their definitions, of Losanitsch's triangle A034851 equal a(n), while the Kn12(n) and Kn22(n) sums equal (a(n+2)-A000012(n)) and the Kn13(n) and Kn23(n) sums equal (a(n+4)-A008619(n+4)). - Johannes W. Meijer, Jul 14 2011
a(n) is the number of homeomorphically irreducible caterpillars with n + 3 edges. - Christian Barrientos, Sep 12 2020
REFERENCES
Jablan S. and Sazdanovic R., LinKnot: Knot Theory by Computer, World Scientific Press, 2007.
FORMULA
G.f.: -(1+x)*(x^3+x-1) / ( (x^2+x-1)*(x^4+x^2-1) ). - R. J. Mathar, Nov 09 2013
a(n) = a(n-1) + 2*a(n-2) - a(n-3) - a(n-5) - a(n-6). - Wesley Ivan Hurt, Sep 17 2020
MAPLE
with(combinat): A102526 :=proc(n): if type(n, even) then (fibonacci(n+1)+fibonacci(n/2+2))/2 else (fibonacci(n+1)+fibonacci((n+1)/2))/2 fi: end: seq(A102526(n), n=0..38); # Johannes W. Meijer, Jul 14 2011
MATHEMATICA
LinearRecurrence[{1, 2, -1, 0, -1, -1}, {1, 1, 2, 2, 4, 5}, 40] (* Jean-François Alcover, Nov 17 2017 *)
PROG
(PARI) Vec((1+x)*(1-x-x^3)/(x^2+x-1)/(x^4+x^2-1)+O(x^99)) \\ Charles R Greathouse IV, Nov 17 2017
(PARI) a(n)=([0, 1, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0; 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 1; -1, -1, 0, -1, 2, 1]^n*[1; 1; 2; 2; 4; 5])[1, 1] \\ Charles R Greathouse IV, Nov 17 2017
CROSSREFS
Cf. A034851.
Essentially the same as A001224, A060312 and A068928.
Sequence in context: A124280 A088518 A001224 * A050192 A191786 A007147
KEYWORD
nonn,easy
AUTHOR
Gerald McGarvey, Feb 24 2005
STATUS
approved