login
A050192
a(n)=a(n-1)+a(n-2)-d, where d=a(n/2) if n is even, else d=0; 2 initial terms.
1
1, 0, 1, 1, 2, 2, 4, 5, 9, 12, 21, 31, 52, 79, 131, 205, 336, 532, 868, 1388, 2256, 3623, 5879, 9471, 15350, 24769, 40119, 64809, 104928, 169606, 274534, 443935, 718469, 1162068, 1880537, 3042073, 4922610, 7963815, 12886425
OFFSET
1,5
LINKS
FORMULA
G.f. g(z) satisfies (1-z-z^2)*g(z) - g(z^2) = z. - Robert Israel, Jun 05 2020
MAPLE
G:= z -> z:
for i from 1 to 7 do
G:= unapply(convert(series((z-G(z^2))/(1-z-z^2), z, 2^i+1), polynom), z)
od:
seq(coeff(G(z), z, i), i=1..2^7); # Robert Israel, Jun 05 2020
CROSSREFS
Sequence in context: A088518 A001224 A102526 * A191786 A007147 A230380
KEYWORD
nonn
STATUS
approved