OFFSET
1,1
COMMENTS
Suggested by Mertens's theorem that Sum_{p <= x} log(p)/p = log(x) + O(1).
REFERENCES
Gérald Tenenbaum, Introduction to analytic and probabilistic number theory, 3rd ed., American Mathematical Society, 2015. See page 16.
FORMULA
EXAMPLE
a(1) = 3 because log(2)/2 + log(3)/3 + log(5)/5 = 1.034665268989... is the first time the sum is >= 1.
MATHEMATICA
Table[k=1; While[Sum[Log@Prime@i/Prime@i, {i, ++k}]<n]; k, {n, 8}] (* Giorgos Kalogeropoulos, Sep 08 2021 *)
PROG
(PARI) a(n) = my(k=0, s=0, p=2); while (s < n, s += log(p)/p; k++; p = nextprime(p+1)); k; \\ Michel Marcus, Sep 06 2021
CROSSREFS
KEYWORD
nonn,more
AUTHOR
N. J. A. Sloane, Sep 06 2021
EXTENSIONS
a(8)-a(16) from Michel Marcus, Sep 06 2021
a(17)-a(23) from Jon E. Schoenfield, Sep 06 2021
a(24)-a(27) from Amiram Eldar, Sep 10 2024
STATUS
approved