OFFSET
1,2
LINKS
Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 1..3000 (first 1000 terms from Alois P. Heinz)
FORMULA
G.f.: Sum(n*(1-x)^2*x^n/((1-2*x+x^n)*(1-2*x+x^(n+1))), n=1..infinity).
G.f.: (1-x)/(1-2*x)*Sum(x^n/(1-2*x+x^n),n=1..infinity). - Vladeta Jovovic, Apr 28 2008
EXAMPLE
a(4) = 19 because we have (4), (3)1, 1(3), (2)2, (2)11, 1(2)1, 11(2) and (1)111; the largest parts, shown between parentheses, add up to 19.
MAPLE
G:=sum(n*(1-x)^2*x^n/((1-2*x+x^n)*(1-2*x+x^(n+1))), n=1..45): Gser:=series(G, x=0, 40): seq(coeff(Gser, x^n), n=1..36); # Emeric Deutsch, Mar 29 2005
# second Maple program:
b:= proc(n, m, t) option remember;
`if`(m=1, 1,
`if`(n<m and not t, 0,
`if`(n=0, 1, add(b(n-j, m, j=m or t), j=1..min(n, m)))))
end:
a:= n-> add(m*b(n, m, false), m=1..n):
seq(a(n), n=1..40); # Alois P. Heinz, Oct 21 2011
MATHEMATICA
nn=33; f[list_]:=Sum[list[[i]]i, {i, 1, Length[list]}]; Drop[Map[f, Transpose[Table[CoefficientList[Series[1/(1-(x-x^(k+1))/(1-x))-1/(1-(x-x^k)/(1-x)), {x, 0, nn}], x], {k, 1, nn}]]], 1] (* Geoffrey Critzer, Apr 06 2014 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Feb 05 2005
EXTENSIONS
More terms from Emeric Deutsch, Mar 29 2005
STATUS
approved