login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102712
Sum of largest parts of all compositions of n.
6
1, 3, 8, 19, 43, 94, 202, 428, 899, 1875, 3890, 8036, 16544, 33962, 69552, 142149, 290017, 590814, 1202016, 2442706, 4958974, 10058216, 20384498, 41282346, 83549603, 168992081, 341627732, 690279026, 1394115072, 2814430326, 5679552630, 11457287926, 23104929222
OFFSET
1,2
LINKS
Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 1..3000 (first 1000 terms from Alois P. Heinz)
FORMULA
G.f.: Sum(n*(1-x)^2*x^n/((1-2*x+x^n)*(1-2*x+x^(n+1))), n=1..infinity).
G.f.: (1-x)/(1-2*x)*Sum(x^n/(1-2*x+x^n),n=1..infinity). - Vladeta Jovovic, Apr 28 2008
EXAMPLE
a(4) = 19 because we have (4), (3)1, 1(3), (2)2, (2)11, 1(2)1, 11(2) and (1)111; the largest parts, shown between parentheses, add up to 19.
MAPLE
G:=sum(n*(1-x)^2*x^n/((1-2*x+x^n)*(1-2*x+x^(n+1))), n=1..45): Gser:=series(G, x=0, 40): seq(coeff(Gser, x^n), n=1..36); # Emeric Deutsch, Mar 29 2005
# second Maple program:
b:= proc(n, m, t) option remember;
`if`(m=1, 1,
`if`(n<m and not t, 0,
`if`(n=0, 1, add(b(n-j, m, j=m or t), j=1..min(n, m)))))
end:
a:= n-> add(m*b(n, m, false), m=1..n):
seq(a(n), n=1..40); # Alois P. Heinz, Oct 21 2011
MATHEMATICA
nn=33; f[list_]:=Sum[list[[i]]i, {i, 1, Length[list]}]; Drop[Map[f, Transpose[Table[CoefficientList[Series[1/(1-(x-x^(k+1))/(1-x))-1/(1-(x-x^k)/(1-x)), {x, 0, nn}], x], {k, 1, nn}]]], 1] (* Geoffrey Critzer, Apr 06 2014 *)
CROSSREFS
Column k=1 of A322428.
Sequence in context: A360489 A259401 A008466 * A054480 A371796 A191787
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Feb 05 2005
EXTENSIONS
More terms from Emeric Deutsch, Mar 29 2005
STATUS
approved