login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360489
Convolution of A000219 and A001477.
0
0, 1, 3, 8, 19, 43, 91, 187, 369, 711, 1335, 2459, 4442, 7904, 13851, 23965, 40958, 69248, 115872, 192097, 315652, 514485, 832112, 1336214, 2131099, 3377178, 5319290, 8330147, 12973662, 20100411, 30986772, 47542096, 72609729, 110410791, 167186826, 252138816, 378781852
OFFSET
0,3
COMMENTS
In general, for 0 < p < 1, delta > 1, beta > -1, the convolution of (delta^(n^p) * n^alfa) and n^beta is asymptotic to delta^(n^p) * n^(alfa + (1-p)*(beta+1)) * Gamma(beta+1) / (p^(beta+1) * log(delta)^(beta+1)).
For p = 1 is the convolution of (delta^(n^p) * n^alfa) and n^beta asymptotic to delta^n * n^alfa * polylog(-beta, 1/delta).
FORMULA
a(n) = Sum_{k=0..n} A000219(k) * (n-k).
G.f.: x/(1-x)^2 * Product_{k>=1} 1/(1 - x^k)^k.
a(n) ~ exp(1/12 + 3*zeta(3)^(1/3) * n^(2/3) / 2^(2/3)) / (A * sqrt(3*Pi) * 2^(35/36) * zeta(3)^(17/36) * n^(1/36)), where A is the Glaisher-Kinkelin constant A074962.
MAPLE
b:= proc(n) option remember; `if`(n=0, 1,
add(b(n-j)*numtheory[sigma][2](j), j=1..n)/n)
end:
a:= n-> add(b(n-j)*j, j=0..n):
seq(a(n), n=0..42); # Alois P. Heinz, Feb 09 2023
MATHEMATICA
nmax = 50; CoefficientList[Series[x/(1-x)^2 * Product[1/(1 - x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Feb 09 2023
STATUS
approved