login
A360487
Convolution of A000009 and A000290.
1
0, 1, 5, 14, 31, 60, 106, 176, 279, 426, 631, 912, 1291, 1795, 2457, 3317, 4424, 5837, 7626, 9875, 12684, 16171, 20476, 25764, 32228, 40094, 49626, 61131, 74966, 91545, 111346, 134921, 162906, 196031, 235134, 281175, 335251, 398615, 472695, 559115, 659721, 776608
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} A000009(k) * (n-k)^2.
G.f.: x*(1+x)/(1-x)^3 * Product_{k>=1} (1 + x^k).
a(n) ~ 4 * 3^(5/4) * n^(3/4) * exp(sqrt(n/3)*Pi) / Pi^3.
MAPLE
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
`if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
end:
a:= n-> add(b(n-j)*j^2, j=0..n):
seq(a(n), n=0..42); # Alois P. Heinz, Feb 09 2023
MATHEMATICA
Table[Sum[PartitionsQ[k]*(n-k)^2, {k, 0, n}], {n, 0, 60}]
CoefficientList[Series[x*(1+x)*QPochhammer[-1, x] / (2*(1-x)^3), {x, 0, 60}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Feb 09 2023
STATUS
approved