login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360487
Convolution of A000009 and A000290.
1
0, 1, 5, 14, 31, 60, 106, 176, 279, 426, 631, 912, 1291, 1795, 2457, 3317, 4424, 5837, 7626, 9875, 12684, 16171, 20476, 25764, 32228, 40094, 49626, 61131, 74966, 91545, 111346, 134921, 162906, 196031, 235134, 281175, 335251, 398615, 472695, 559115, 659721, 776608
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} A000009(k) * (n-k)^2.
G.f.: x*(1+x)/(1-x)^3 * Product_{k>=1} (1 + x^k).
a(n) ~ 4 * 3^(5/4) * n^(3/4) * exp(sqrt(n/3)*Pi) / Pi^3.
MAPLE
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
`if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
end:
a:= n-> add(b(n-j)*j^2, j=0..n):
seq(a(n), n=0..42); # Alois P. Heinz, Feb 09 2023
MATHEMATICA
Table[Sum[PartitionsQ[k]*(n-k)^2, {k, 0, n}], {n, 0, 60}]
CoefficientList[Series[x*(1+x)*QPochhammer[-1, x] / (2*(1-x)^3), {x, 0, 60}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Feb 09 2023
STATUS
approved