login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299276
Partial sums of A008137.
51
1, 5, 14, 31, 59, 101, 161, 242, 347, 479, 641, 837, 1070, 1343, 1659, 2021, 2433, 2898, 3419, 3999, 4641, 5349, 6126, 6975, 7899, 8901, 9985, 11154, 12411, 13759, 15201, 16741, 18382, 20127, 21979, 23941, 26017, 28210, 30523, 32959, 35521, 38213, 41038
OFFSET
0,2
COMMENTS
Euler transform of length 6 sequence [5, -1, 1, -1, 1, -1]. - Michael Somos, Oct 03 2018
FORMULA
From Colin Barker, Feb 11 2018: (Start)
G.f.: (1 + x)^3*(1 - x + x^2)*(1 + x^2) / ((1 - x)^4*(1 + x + x^2 + x^3 + x^4)).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-5) - 3*a(n-6) + 3*a(n-7) - a(n-8) for n>7.
(End)
a(n) = -a(-1-n) for all n in Z.
EXAMPLE
G.f. = 1 + 5*x + 14*x^2 + 31*x^3 + 59*x^4 + 101*x^5 + 161*x^6 + ... - Michael Somos, Oct 03 2018
MATHEMATICA
a[ n_] := (8 n^3 + 12 n^2 + 40 n + 18 - {3, 3, 0, -3, -3, 3}[[Mod[n, 5] + 1]]) / 15; (* Michael Somos, Oct 03 2018 *)
PROG
(PARI) Vec((1 + x)^3*(1 - x + x^2)*(1 + x^2) / ((1 - x)^4*(1 + x + x^2 + x^3 + x^4)) + O(x^60)) \\ Colin Barker, Feb 11 2018
(PARI) {a(n) = (8*n^3 + 12*n^2 + 40*n + 18 - 3*(n%5<2) + 3*(n%5>2)) / 15}; /* Michael Somos, Oct 03 2018 */
CROSSREFS
Cf. A008137.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Sequence in context: A081861 A372636 A299903 * A267167 A360487 A023652
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 10 2018
STATUS
approved