login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299272
Coordination sequence for "flu" 3D uniform tiling formed from tetrahedra, rhombicuboctahedra, and cubes.
51
1, 6, 18, 37, 63, 99, 142, 189, 249, 317, 384, 468, 562, 648, 756, 877, 981, 1113, 1262, 1383, 1539, 1717, 1854, 2034, 2242, 2394, 2598, 2837, 3003, 3231, 3502, 3681, 3933, 4237, 4428, 4704, 5042, 5244, 5544, 5917, 6129, 6453, 6862, 7083, 7431, 7877, 8106, 8478, 8962, 9198
OFFSET
0,2
COMMENTS
First 20 terms computed by Davide M. Proserpio using ToposPro.
The tiling is called "3-RCO-trille" in Conway, Burgiel, Goodman-Strauss, 2008, p. 297. - Felix Fröhlich, Feb 11 2018
REFERENCES
J. H. Conway, H. Burgiel and Chaim Goodman-Strauss, The Symmetries of Things, A K Peters, Ltd., 2008, ISBN 978-1-56881-220-5.
B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #5.
LINKS
FORMULA
Conjectures from Colin Barker, Feb 11 2018: (Start)
G.f.: (1 + x)^3*(1 + x^2)*(1 + 3*x + 5*x^2 + 3*x^3 + x^4) / ((1 - x)^3*(1 + x + x^2)^3).
a(n) = 3*a(n-3) - 3*a(n-6) + a(n-9) for n>9.
(End)
G.f.: (x^2+1)*(x^4+3*x^3+5*x^2+3*x+1)*(x+1)^3 / (1-x^3)^3. - N. J. A. Sloane, Feb 12 2018 (This confirms my conjecture from Feb 10 2018 and the above conjecture from Colin Barker.)
a(n) = (60 + 104*n^2 + (n^2 - 6)*cos(2*n*Pi/3) - 3*sqrt(3)*n*sin(2*n*Pi/3))/27 for n > 0. - Stefano Spezia, Jan 23 2022
MATHEMATICA
CoefficientList[Series[(x^2+1)*(x^4+3*x^3+5*x^2+3*x+1)*(x+1)^3/(1-x^3)^3, {x, 0, 50}], x] (* G. C. Greubel, Feb 20 2018 *)
PROG
(PARI) x='x+O('x^30); Vec((x^2+1)*(x^4+3*x^3+5*x^2+3*x+1)*(x+1)^3/(1-x^3)^3) \\ G. C. Greubel, Feb 20 2018
(Magma) Q:=Rationals(); R<x>:=PowerSeriesRing(Q, 40); Coefficients(R!((x^2+1)*(x^4+3*x^3+5*x^2+3*x+1)*(x+1)^3/(1-x^3)^3)) // G. C. Greubel, Feb 20 2018
CROSSREFS
See A299273 for partial sums.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Sequence in context: A180438 A202366 A185223 * A101853 A132432 A005899
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 10 2018
EXTENSIONS
a(21)-a(40) from Davide M. Proserpio, Feb 12 2018
STATUS
approved