login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299256
Coordination sequence for 3D uniform tiling formed by stacking parallel layers of the 3.6.3.6 2D tiling (cf. A008579).
51
1, 6, 18, 40, 72, 112, 162, 220, 288, 364, 450, 544, 648, 760, 882, 1012, 1152, 1300, 1458, 1624, 1800, 1984, 2178, 2380, 2592, 2812, 3042, 3280, 3528, 3784, 4050, 4324, 4608, 4900, 5202, 5512, 5832, 6160, 6498, 6844, 7200, 7564, 7938, 8320, 8712, 9112, 9522, 9940, 10368, 10804, 11250, 11704
OFFSET
0,2
REFERENCES
B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #18.
LINKS
Reticular Chemistry Structure Resource (RCSR), The kag tiling (or net)
FORMULA
G.f.: (1 + 2*x)*(x^4 - 2*x^3 - 2*x^2 - 2*x - 1) / ((x - 1)^3*(x + 1)).
From Colin Barker, Feb 09 2018: (Start)
a(n) = 9*n^2 / 2 for n>1.
a(n) = (9*n^2 - 1) / 2 for n>1.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>5. (End)
E.g.f.: (2 + 4*x + 9*x*(x + 1)*cosh(x) + (9*x^2 + 9*x - 1)*sinh(x))/2. - Stefano Spezia, Mar 14 2024
MAPLE
seq(coeff(series((1+2*x)*(x^4-2*x^3-2*x^2-2*x-1)/((x-1)^3*(1+x)), x, n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Oct 26 2018
MATHEMATICA
Join[{1, 6}, LinearRecurrence[{2, 0, -2, 1}, {18, 40, 72, 112}, 50]] (* Vincenzo Librandi, Oct 26 2018 *)
PROG
(PARI) Vec((1 + 2*x)*(1 + 2*x + 2*x^2 + 2*x^3 - x^4) / ((1 - x)^3*(1 + x)) + O(x^60)) \\ Colin Barker, Feb 09 2018
(Magma) [1, 6] cat [9*n^2 div 2: n in [2..50]]; // Vincenzo Librandi, Oct 26 2018
(GAP) a:=[18, 40, 72, 112];; for n in [5..50] do a[n]:=2*a[n-1]-2*a[n-3]+a[n-4]; od; Concatenation([1, 6], a); # Muniru A Asiru, Oct 26 2018
CROSSREFS
Cf. A008579.
For partial sums see A299262.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Sequence in context: A219143 A122061 A333713 * A002411 A023658 A059834
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 07 2018
STATUS
approved