login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coordination sequence for 3D uniform tiling formed by stacking parallel layers of the 3.6.3.6 2D tiling (cf. A008579).
51

%I #33 Mar 14 2024 16:37:28

%S 1,6,18,40,72,112,162,220,288,364,450,544,648,760,882,1012,1152,1300,

%T 1458,1624,1800,1984,2178,2380,2592,2812,3042,3280,3528,3784,4050,

%U 4324,4608,4900,5202,5512,5832,6160,6498,6844,7200,7564,7938,8320,8712,9112,9522,9940,10368,10804,11250,11704

%N Coordination sequence for 3D uniform tiling formed by stacking parallel layers of the 3.6.3.6 2D tiling (cf. A008579).

%D B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #18.

%H Colin Barker, <a href="/A299256/b299256.txt">Table of n, a(n) for n = 0..1000</a>

%H Reticular Chemistry Structure Resource (RCSR), <a href="http://rcsr.net/nets/kag">The kag tiling (or net)</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-2,1).

%F G.f.: (1 + 2*x)*(x^4 - 2*x^3 - 2*x^2 - 2*x - 1) / ((x - 1)^3*(x + 1)).

%F From _Colin Barker_, Feb 09 2018: (Start)

%F a(n) = 9*n^2 / 2 for n>1.

%F a(n) = (9*n^2 - 1) / 2 for n>1.

%F a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>5. (End)

%F E.g.f.: (2 + 4*x + 9*x*(x + 1)*cosh(x) + (9*x^2 + 9*x - 1)*sinh(x))/2. - _Stefano Spezia_, Mar 14 2024

%p seq(coeff(series((1+2*x)*(x^4-2*x^3-2*x^2-2*x-1)/((x-1)^3*(1+x)),x,n+1), x, n), n = 0 .. 35); # _Muniru A Asiru_, Oct 26 2018

%t Join[{1, 6}, LinearRecurrence[{2, 0, -2, 1}, {18, 40, 72, 112}, 50]] (* _Vincenzo Librandi_, Oct 26 2018 *)

%o (PARI) Vec((1 + 2*x)*(1 + 2*x + 2*x^2 + 2*x^3 - x^4) / ((1 - x)^3*(1 + x)) + O(x^60)) \\ _Colin Barker_, Feb 09 2018

%o (Magma) [1, 6] cat [9*n^2 div 2: n in [2..50]]; // _Vincenzo Librandi_, Oct 26 2018

%o (GAP) a:=[18,40,72,112];; for n in [5..50] do a[n]:=2*a[n-1]-2*a[n-3]+a[n-4]; od; Concatenation([1,6],a); # _Muniru A Asiru_, Oct 26 2018

%Y Cf. A008579.

%Y For partial sums see A299262.

%Y The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, Feb 07 2018