login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122061
First pentagonal number, 2nd hexagonal number, 3rd heptagonal number, 4th octagonal number and then repeat the same pattern: 5th pentagonal, 6th hexagonal, 7th heptagonal, 8th octagonal, etc.
1
1, 6, 18, 40, 35, 66, 112, 176, 117, 190, 286, 408, 247, 378, 540, 736, 425, 630, 874, 1160, 651, 946, 1288, 1680, 925, 1326, 1782, 2296, 1247, 1770, 2356, 3008, 1617, 2278, 3010, 3816, 2035, 2850, 3744, 4720, 2501, 3486, 4558, 5720, 3015, 4186, 5452
OFFSET
1,2
COMMENTS
From a quiz.
REFERENCES
A. Wareham, Test Your Brain Power, Ward Lock Ltd (1995).
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 3, 0, 0, 0, -3, 0, 0, 0, 1).
FORMULA
a(n) = n*(3*n-1)/2 if n=1 mod 4 or n*(4*n-2)/2 if n=2 mod 4 or n*(5*n-3)/2 if n=3 mod 4 or n*(6*n-4)/2 if n=0 mod 4
a(n)=3*a(n-4)-3*a(n-8)+a(n-12) for n>11. - Harvey P. Dale, Mar 01 2015
MATHEMATICA
fn[n_]:=Module[{r=Mod[n, 4]}, Which[r==1, (n(3n-1))/2, r==2, (n(4n-2))/2, r==3, (n(5n-3))/2, r==0, (n(6n-4))/2]]; Array[fn, 50] (* or *) LinearRecurrence[ {0, 0, 0, 3, 0, 0, 0, -3, 0, 0, 0, 1}, {1, 6, 18, 40, 35, 66, 112, 176, 117, 190, 286, 408}, 50] (* Harvey P. Dale, Mar 01 2015 *)
PROG
(PARI) for(n=1, 60, m=(n+3)%4; print1(n*((m+3)*n-m-1)/2, ", "))
CROSSREFS
Cf. A060354.
Sequence in context: A271541 A035489 A219143 * A333713 A299256 A002411
KEYWORD
nonn
AUTHOR
Herman Jamke (hermanjamke(AT)fastmail.fm), Sep 14 2006
STATUS
approved