The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005897 a(n) = 6*n^2 + 2 for n > 0, a(0)=1. (Formerly M4497) 580
 1, 8, 26, 56, 98, 152, 218, 296, 386, 488, 602, 728, 866, 1016, 1178, 1352, 1538, 1736, 1946, 2168, 2402, 2648, 2906, 3176, 3458, 3752, 4058, 4376, 4706, 5048, 5402, 5768, 6146, 6536, 6938, 7352, 7778, 8216, 8666, 9128, 9602, 10088, 10586 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Number of points on surface of 3-dimensional cube in which each face has a square grid of dots drawn on it (with n+1 points along each edge, including the corners). Coordination sequence for b.c.c. lattice. Also coordination sequence for 3D uniform tiling with tile an equilateral triangular prism. - N. J. A. Sloane, Feb 06 2018 Binomial transform of [1, 7, 11, 1, -1, 1, -1, 1, ...]. - Gary W. Adamson, Oct 22 2007 First differences of A005898. - Jonathan Vos Post, Feb 06 2011 Apart from the first term, numbers of the form (r^2+2*s^2)*n^2+2 = (r*n)^2+(s*n-1)^2+(s*n+1)^2: in this case is r=2, s=1. After 8, all terms are in A000408. - Bruno Berselli, Feb 07 2012 For n > 0, the sequence of last digits (i.e., a(n) mod 10) is (8, 6, 6, 8, 2) repeating forever. - M. F. Hasler, Apr 05 2016 Number of cubes of edge length 1 required to make a hollow cube of edge length n+1. - Peter M. Chema, Apr 01 2017 REFERENCES H. S. M. Coxeter, "Polyhedral numbers," in R. S. Cohen et al., editors, For Dirk Struik. Reidel, Dordrecht, 1974, pp. 25-35. Gmelin Handbook of Inorg. and Organomet. Chem., 8th Ed., 1994, TYPIX search code (194) hP4 B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #11. R. W. Marks and R. B. Fuller, The Dymaxion World of Buckminster Fuller. Anchor, NY, 1973, p. 46. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..10000 John Elias, Illustration: Generalized octagonal cubes R. W. Grosse-Kunstleve, Coordination Sequences and Encyclopedia of Integer Sequences R. W. Grosse-Kunstleve, G. O. Brunner and N. J. A. Sloane, Algebraic Description of Coordination Sequences and Exact Topological Densities for Zeolites, Acta Cryst., A52 (1996), pp. 879-889. M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908. M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908. [Annotated scanned copy] Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009. Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992 Reticular Chemistry Structure Resource (RCSR), The hex tiling (or net) B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558. Index entries for sequences related to b.c.c. lattice Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA G.f.: (1+x)*(1+4*x+x^2)/(1-x)^3. - Simon Plouffe a(0) = 1, a(n) = (n+1)^3 - (n-1)^3. - Ilya Nikulshin (ilyanik(AT)gmail.com), Aug 11 2009 a(0)=1, a(1)=8, a(2)=26, a(3)=56; for n>3, a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). - Harvey P. Dale, Oct 25 2011 a(n) = A033581(n) + 2. - Reinhard Zumkeller, Apr 27 2014 E.g.f.: 2*(1 + 3*x + 3*x^2)*exp(x) - 1. - G. C. Greubel, Dec 01 2017 a(n) = A000567(n+1) + A045944(n-1), for n>0. See illustration. - John Elias, Mar 12 2022 a(n) = 2*A056107(n), n>0. - R. J. Mathar, May 30 2022 EXAMPLE For n = 1 we get the 8 corners of the cube; for n = 2 each face has 9 points, for a total of 8 + 12 + 6 = 26. MAPLE A005897:=-(z+1)*(z**2+4*z+1)/(z-1)**3; # conjectured (correctly) by Simon Plouffe in his 1992 dissertation MATHEMATICA Join[{1}, 6Range[50]^2+2] (* or *) Join[{1}, LinearRecurrence[{3, -3, 1}, {8, 26, 56}, 50]] (* Harvey P. Dale, Oct 25 2011 *) PROG (Magma) [1] cat [6*n^2 + 2: n in [1..50]]; // Vincenzo Librandi, Oct 26 2011 (PARI) a(n)=if(n, 6*n^2+2, 1) \\ Charles R Greathouse IV, Mar 06 2014 (PARI) x='x+O('x^30); Vec(serlaplace(2*(1 + 3*x + 3*x^2)*exp(x) - 1)) \\ G. C. Greubel, Dec 01 2017 (Haskell) a005897 n = if n == 0 then 1 else 6 * n ^ 2 + 2 -- Reinhard Zumkeller, Apr 27 2014 CROSSREFS Cf. A000578, A206399. See A005898 for partial sums. The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview. Sequence in context: A347677 A225274 A085690 * A215097 A331242 A111694 Adjacent sequences: A005894 A005895 A005896 * A005898 A005899 A005900 KEYWORD nonn,easy,nice AUTHOR N. J. A. Sloane, Ralf W. Grosse-Kunstleve STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 24 17:51 EDT 2024. Contains 371962 sequences. (Running on oeis4.)