OFFSET
1,2
COMMENTS
Also sum of largest parts of all partitions of n into distinct parts. - Vladeta Jovovic, Feb 15 2004
REFERENCES
Andrews, George E.; Ramanujan's "lost" notebook. V. Euler's partition identity. Adv. in Math. 61 (1986), no. 2, 156-164.
S.-Y. Kang, Generalizations of Ramanujan's reciprocity theorem..., J. London Math. Soc., 75 (2007), 18-34. See Eq. (1.5) but beware errors.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000
FORMULA
G.f.: sum(n>=0, S(q) - prod(k=1..n, 1+q^k) ), where S(q)=prod(k>=1, 1+q^k) (g.f. for A000009).
G.f. sum(k>=0, (k+1)*x^(k+1) * prod(j=1..k, 1+x^j) ). [Joerg Arndt, Sep 17 2012]
MAPLE
M:=201; add( mul( (1+q^j), j=1..M) - mul( (1+q^j), j=1..n), n=0..M);
# second Maple program:
b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, 0, `if`(
n=0, 1, b(n, i-1)+`if`(i>n, 0, b(n-i, min(n-i, i-1)))))
end:
a:= n-> add(j*b(n-j, min(n-j, j-1)), j=1..n):
seq(a(n), n=1..80); # Alois P. Heinz, Feb 03 2016
MATHEMATICA
m = 46; f[q_] := Sum[ Product[ (1+q^j), {j, 1, m}] - Product[ (1+q^j), {j, 1, n}], {n, 0, m}]; CoefficientList[ f[q], q][[2 ;; m+1]] (* Jean-François Alcover, Apr 13 2012, after Maple *)
PROG
(PARI)
N=66; x='x+O('x^N);
S=prod(k=1, N, 1+x^k); gf=sum(n=0, N, S-prod(k=1, n, 1+x^k));
/* alternative: Arndt's g.f.: */
/* gf=sum(k=0, N, (k+1)*x^(k+1) * prod(j=1, k, 1+x^j) ); */
Vec(gf)
/* Joerg Arndt, Sep 17 2012 */
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
More terms from James A. Sellers, Dec 24 1999
STATUS
approved