login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005895
Weighted count of partitions with distinct parts.
(Formerly M1337)
8
1, 2, 5, 7, 12, 18, 26, 35, 50, 67, 88, 116, 149, 191, 245, 306, 381, 477, 585, 718, 880, 1067, 1288, 1555, 1863, 2226, 2656, 3151, 3726, 4406, 5180, 6077, 7124, 8316, 9691, 11278, 13080, 15146, 17517, 20204, 23264, 26759, 30705, 35182, 40274, 46000, 52473, 59795, 68018, 77279, 87711, 99395, 112508
OFFSET
1,2
COMMENTS
Also sum of largest parts of all partitions of n into distinct parts. - Vladeta Jovovic, Feb 15 2004
REFERENCES
Andrews, George E.; Ramanujan's "lost" notebook. V. Euler's partition identity. Adv. in Math. 61 (1986), no. 2, 156-164.
S.-Y. Kang, Generalizations of Ramanujan's reciprocity theorem..., J. London Math. Soc., 75 (2007), 18-34. See Eq. (1.5) but beware errors.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
FORMULA
G.f.: sum(n>=0, S(q) - prod(k=1..n, 1+q^k) ), where S(q)=prod(k>=1, 1+q^k) (g.f. for A000009).
G.f. sum(k>=0, (k+1)*x^(k+1) * prod(j=1..k, 1+x^j) ). [Joerg Arndt, Sep 17 2012]
MAPLE
M:=201; add( mul( (1+q^j), j=1..M) - mul( (1+q^j), j=1..n), n=0..M);
# second Maple program:
b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, 0, `if`(
n=0, 1, b(n, i-1)+`if`(i>n, 0, b(n-i, min(n-i, i-1)))))
end:
a:= n-> add(j*b(n-j, min(n-j, j-1)), j=1..n):
seq(a(n), n=1..80); # Alois P. Heinz, Feb 03 2016
MATHEMATICA
m = 46; f[q_] := Sum[ Product[ (1+q^j), {j, 1, m}] - Product[ (1+q^j), {j, 1, n}], {n, 0, m}]; CoefficientList[ f[q], q][[2 ;; m+1]] (* Jean-François Alcover, Apr 13 2012, after Maple *)
PROG
(PARI)
N=66; x='x+O('x^N);
S=prod(k=1, N, 1+x^k); gf=sum(n=0, N, S-prod(k=1, n, 1+x^k));
/* alternative: Arndt's g.f.: */
/* gf=sum(k=0, N, (k+1)*x^(k+1) * prod(j=1, k, 1+x^j) ); */
Vec(gf)
/* Joerg Arndt, Sep 17 2012 */
CROSSREFS
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms from James A. Sellers, Dec 24 1999
STATUS
approved