OFFSET
0,6
REFERENCES
Andrews, George E. Ramanujan's "lost" notebook. V. Euler's partition identity. Adv. in Math. 61 (1986), no. 2, 156-164.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..300
FORMULA
G.f.: Sum_{n=0..infinity} {S(q)-1/((1-q)(1-q^3)...(1-q^(2n+1)))}, where S(q) = g.f. for A000009.
EXAMPLE
G.f. = x^3 + x^4 + 3*x^5 + 4*x^6 + 7*x^7 + 9*x^8 + 14*x^9 + 19*x^10 + ... - Michael Somos, Oct 21 2018
MATHEMATICA
max = 48; f[n_, x_] := Product[ 1/(1-x^(2k+1)), {k, 0, n}]; g[x_] = Sum[ f[max/2, x] - f[n, x], {n, 0, max/2}]; CoefficientList[ Series[ g[x], {x, 0, max}], x] (* Jean-François Alcover, Nov 17 2011, after g.f. *)
a[ n_] := With[{A = 1 / QPochhammer[ q, q^2]}, SeriesCoefficient[ Sum[A - 1 / QPochhammer[ q, q^2, k], {k, 1, n/2}], {q, 0, n}]]; (* Michael Somos, Oct 21 2018 *)
PROG
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
More terms from Michael Somos.
STATUS
approved