login
A023668
Convolution of A001950 and A023533.
1
2, 5, 7, 12, 18, 22, 28, 33, 38, 46, 53, 61, 70, 77, 85, 93, 100, 109, 116, 126, 137, 147, 158, 168, 178, 190, 199, 210, 221, 230, 242, 252, 262, 274, 285, 299, 312, 324, 339, 350, 364, 377, 390, 404, 416, 429, 444, 455, 469, 482, 494, 509, 521
OFFSET
1,1
LINKS
FORMULA
a(n) = Sum_{j=1..n} A001950(j) * A023533(n-j+1).
T(n, k) = Sum_{j=1..n} A001950(k+1 +binomial(n+2,3) -binomial(j+2,3)), for 0 <= k <= n*(n+3)/2, n >= 1 (as an irregular triangle). - G. C. Greubel, Jul 18 2022
MATHEMATICA
A023668[n_, k_]:= A023668[n, k]= Sum[Floor[(k+1 +Binomial[n+2, 3] -Binomial[j+2, 3])*GoldenRatio^2], {j, n}];
Table[A023668[n, k], {n, 7}, {k, 0, n*(n+3)/2}] (* G. C. Greubel, Jul 18 2022 *)
PROG
(Magma)
A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >;
[(&+[Floor(k*(3+Sqrt(5))/2)*A023533(n-k+1): k in [1..n]]): n in [1..80]]; // G. C. Greubel, Jul 18 2022
(SageMath)
def A023668(n, k): return sum( floor((k+1 + binomial(n+2, 3) - binomial(j+2, 3))*golden_ratio^2) for j in (1..n) )
flatten([[A023668(n, k) for k in (0..n*(n+3)/2)] for n in (1..7)]) # G. C. Greubel, Jul 18 2022
CROSSREFS
KEYWORD
nonn
STATUS
approved