login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A023668
Convolution of A001950 and A023533.
1
2, 5, 7, 12, 18, 22, 28, 33, 38, 46, 53, 61, 70, 77, 85, 93, 100, 109, 116, 126, 137, 147, 158, 168, 178, 190, 199, 210, 221, 230, 242, 252, 262, 274, 285, 299, 312, 324, 339, 350, 364, 377, 390, 404, 416, 429, 444, 455, 469, 482, 494, 509, 521
OFFSET
1,1
LINKS
FORMULA
a(n) = Sum_{j=1..n} A001950(j) * A023533(n-j+1).
T(n, k) = Sum_{j=1..n} A001950(k+1 +binomial(n+2,3) -binomial(j+2,3)), for 0 <= k <= n*(n+3)/2, n >= 1 (as an irregular triangle). - G. C. Greubel, Jul 18 2022
MATHEMATICA
A023668[n_, k_]:= A023668[n, k]= Sum[Floor[(k+1 +Binomial[n+2, 3] -Binomial[j+2, 3])*GoldenRatio^2], {j, n}];
Table[A023668[n, k], {n, 7}, {k, 0, n*(n+3)/2}] (* G. C. Greubel, Jul 18 2022 *)
PROG
(Magma)
A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >;
[(&+[Floor(k*(3+Sqrt(5))/2)*A023533(n-k+1): k in [1..n]]): n in [1..80]]; // G. C. Greubel, Jul 18 2022
(SageMath)
def A023668(n, k): return sum( floor((k+1 + binomial(n+2, 3) - binomial(j+2, 3))*golden_ratio^2) for j in (1..n) )
flatten([[A023668(n, k) for k in (0..n*(n+3)/2)] for n in (1..7)]) # G. C. Greubel, Jul 18 2022
CROSSREFS
KEYWORD
nonn
STATUS
approved