OFFSET
1,12
COMMENTS
For integers x,y,p,q >= 0, set (s_i)_{i>=1} to be the sequence of p ones followed by the binomial coefficients C(x,j) for 0 <= j <= x followed by an infinite string of zeros, and set (t_i)_{i>=1} to be the sequence of q ones followed by the binomial coefficients C(y,j) for 0 <= j <= y followed by an infinite string of zeros. Then a(n) is the number of non-unimodal sequences (r_i)_{i>=1} where r_i = Sum_{j=1..i} s_j*t_{i-j} for some(s_i) and (t_i) such that x + y + p + q + 1 = n.
Let T be a rooted tree created by identifying the root vertices of two broom graphs. a(n) is the number of trees T on n vertices whose poset of connected, vertex-induced subgraphs is not rank unimodal.
LINKS
T. M. Brown, On the unimodality of convolutions of sequences of binomial coefficients, arXiv:1810.08235 [math.CO] (2018). See table 1 on page 17.
M. Jacobson, A. E. Kézdy, and S. Seif, The poset on connected induced subgraphs of a graph need not be Sperner, Order, 12 (1995) 315-318.
FORMULA
a(n+10) = 2*(Sum_{i=1..n/2} floor(i*(i+4)/4)) - floor(n^2/16) for n even.
a(n+10) = 2*(Sum_{i=1..(n-1)/2} floor(i(i+4)/4)) - floor((n-1)^2/16) + floor((n+1)*(n+9)/16) for n odd.
MATHEMATICA
Table[If[EvenQ[n], 2*(Sum[Floor[i(i+4)/4], {i, 0, (n/2)}]) - Floor[n^2/16], 2*(Sum[Floor[i(i+4)/4], {i, 0, (n-1)/2}]) - Floor[(n-1)^2/16] + Floor[(n+1)(n+9)/16]], {n, 0, 40}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Tricia Muldoon Brown, Oct 17 2018
STATUS
approved