OFFSET
0,3
COMMENTS
For n > 2, sum of all distinct prime factors composing numbers from 2 to n.
REFERENCES
M. Kalecki, On certain sums extended over primes or prime factors (in Polish), Prace Mat., Vol. 8 (1963/64), pp. 121-129.
József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter IV, p. 144.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
Vaclav Kotesovec, Plot of a(n) / ((Pi^2/12) * n^2/log(n)) for n = 1..10^8
FORMULA
a(n) = A034387([n/1]) + A034387([n/2]) + ... + A034387([n/n]). Terms can be computed efficiently with the following formula: a(n) = A034387([n/1]) + ... + A034387([n/m]) - m*A034387([n/m]) + Sum_{prime p<=n/m} p*[n/p], where m = [sqrt(n)]. - Max Alekseyev, Feb 10 2012
G.f.: Sum_{k >=1} (prime(k)*x^prime(k)/(1-x^prime(k)))/(1-x). - Vladeta Jovovic, Aug 11 2004
a(n) ~ ((Pi^2 + o(1))/12) * n^2/log(n) (Kalecki, 1963/64). - Amiram Eldar, Mar 04 2021
MATHEMATICA
Join[{0}, Table[Sum[Prime[k] Floor[n / Prime[k]], {k, 1, n}], {n, 1, 60}]] (* Vincenzo Librandi, Jul 28 2019 *)
Join[{0}, Accumulate[Table[Sum[p, {p, Select[Divisors[n], PrimeQ]}], {n, 1, 100}]]] (* Vaclav Kotesovec, May 20 2020 *)
PROG
(PARI) a(n) = sum(k=1, n, prime(k)*(n\prime(k))); \\ Michel Marcus, Mar 01 2015
(PARI) a(n)=my(s); forprime(p=2, n, s+=n\p*p); s \\ Charles R Greathouse IV, Jun 26 2020
(Magma) [0] cat [ &+[ NthPrime(k)*Floor(n/NthPrime(k)): k in [1..n]]: n in [1..60]]; // Vincenzo Librandi, Jul 28 2019
(Python)
from sympy import prime
def A024924(n): return sum((p:=prime(k))*(n//p) for k in range(1, n+1)) # Chai Wah Wu, Sep 18 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(0)=0 prepended by Max Alekseyev, Feb 10 2012
STATUS
approved