|
|
A034387
|
|
Sum of primes <= n.
|
|
45
|
|
|
0, 2, 5, 5, 10, 10, 17, 17, 17, 17, 28, 28, 41, 41, 41, 41, 58, 58, 77, 77, 77, 77, 100, 100, 100, 100, 100, 100, 129, 129, 160, 160, 160, 160, 160, 160, 197, 197, 197, 197, 238, 238, 281, 281, 281, 281, 328, 328, 328, 328, 328, 328, 381, 381, 381, 381, 381
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Also sum of all prime factors in n!.
For large n, these numbers can be closely approximated by the number of primes < n^2. For example, the sum of primes < 10^10 = 2220822432581729238. The number of primes < (10^10)^2 or 10^20 = 2220819602560918840. This has a relative error of 0.0000012743... - Cino Hilliard, Jun 08 2008
|
|
LINKS
|
|
|
FORMULA
|
From the prime number theorem a(n) has the asymptotic expression: a(n) ~ n^2 / (2 log n). - Dan Fux (dan.fux(AT)OpenGaia.com), Apr 07 2001
Conjecture: G.f.: Sum_{i>0} Sum_{j>=i} Sum_{k>=j|i-j+k is prime} x^k. - Benedict W. J. Irwin, Mar 31 2017
|
|
MAPLE
|
a:= proc(n) option remember; `if`(n<1, 0,
a(n-1)+`if`(isprime(n), n, 0))
end:
|
|
MATHEMATICA
|
s=0; Table[s=s+n*Boole[PrimeQ[n]], {n, 100}] (* Zak Seidov, Apr 11 2011 *)
Accumulate[Table[If[PrimeQ[n], n, 0], {n, 60}]] (* Harvey P. Dale, Jul 25 2016 *)
|
|
PROG
|
(PARI) a=0; for(k=1, 100, print1(a=a+k*isprime(k), ", ")) \\ Zak Seidov, Apr 11 2011
(PARI) a(n) = if(n <= 1, return(0)); my(r=sqrtint(n)); my(V=vector(r, k, n\k)); my(L=n\r-1); V=concat(V, vector(L, k, L-k+1)); my(T=vector(#V, k, V[k]*(V[k]+1)\2)); my(S=Map(matrix(#V, 2, x, y, if(y==1, V[x], T[x])))); forprime(p=2, r, my(sp=mapget(S, p-1), p2=p*p); for(k=1, #V, if(V[k] < p2, break); mapput(S, V[k], mapget(S, V[k]) - p*(mapget(S, V[k]\p) - sp)))); mapget(S, n)-1; \\ Daniel Suteu, Jun 29 2022
(Haskell)
a034387 n = a034387_list !! (n-1)
a034387_list = scanl1 (+) a061397_list
(Python)
from sympy import isprime
from itertools import accumulate
def alist(n): return list(accumulate(k*isprime(k) for k in range(1, n+1)))
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|