login
A023670
Convolution of A023533 with itself.
10
1, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 1, 2, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 2, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 2
OFFSET
1,4
LINKS
FORMULA
a(n) = Sum_{k=1..n} A023533(k)*A023533(n-k+1). - G. C. Greubel, Jul 14 2022
MATHEMATICA
A023533[n_]:= If[Binomial[Floor[Surd[6*n-1, 3]] +2, 3] != n, 0, 1];
A023670[n_]:= Sum[A023533[k]*A023533[n+1-k], {k, n}];
Table[A023670[n], {n, 100}] (* G. C. Greubel, Jul 14 2022 *)
PROG
(Magma)
A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >;
[(&+[A023533(k)*A023533(n-k+1): k in [1..n]]): n in [1..100]]; // G. C. Greubel, Jul 14 2022
(SageMath)
def A023533(n):
if binomial( floor( (6*n-1)^(1/3) ) +2, 3) != n: return 0
else: return 1
[sum(A023533(k)*A023533(n-k+1) for k in (1..n)) for n in (1..100)] # G. C. Greubel, Jul 14 2022
CROSSREFS
Cf. A023533.
Sequence in context: A103612 A083913 A363855 * A284394 A188170 A363805
KEYWORD
nonn
STATUS
approved