login
A299264
Partial sums of A299258.
51
1, 6, 19, 44, 85, 147, 236, 357, 514, 711, 953, 1246, 1595, 2004, 2477, 3019, 3636, 4333, 5114, 5983, 6945, 8006, 9171, 10444, 11829, 13331, 14956, 16709, 18594, 20615, 22777, 25086, 27547, 30164, 32941, 35883, 38996, 42285, 45754, 49407, 53249, 57286, 61523
OFFSET
0,2
COMMENTS
Euler transform of length 6 sequence [6, -2, 0, 0, 1, -1]. - Michael Somos, Oct 03 2018
FORMULA
From Colin Barker, Feb 09 2018: (Start)
G.f.: (1 + x)^3*(1 - x + x^2)*(1 + x + x^2) / ((1 - x)^4*(1 + x + x^2 + x^3 + x^4)).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-5) - 3*a(n-6) + 3*a(n-7) - a(n-8) for n>7. (End)
a(n) = -a(-1-n) for all n in Z. - Michael Somos, Oct 03 2018
a(n) ~ 4*n^3/5. - Stefano Spezia, Jun 06 2024
EXAMPLE
G.f. = 1 + 6*x + 19*x^2 + 44*x^3 + 85*x^4 + 147*x^5 + 236*x^6 + ... - Michael Somos, Oct 03 2018
MATHEMATICA
a[ n_] := (4 n^3 + 6 n^2 + 16 n + {5, 4, 7, 10, 9}[[Mod[n, 5] + 1]]) / 5; (* Michael Somos, Oct 03 2018 *)
PROG
(PARI) Vec((1 + x)^3*(1 - x + x^2)*(1 + x + x^2) / ((1 - x)^4*(1 + x + x^2 + x^3 + x^4)) + O(x^60)) \\ Colin Barker, Feb 09 2018
(PARI) {a(n) = (4*n^3 + 6*n^2 + 16*n + [5, 4, 7, 10, 9][n%5+1]) / 5}; /* Michael Somos, Oct 03 2018 */
CROSSREFS
Cf. A299258.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Sequence in context: A061293 A005900 A138357 * A183763 A209403 A272707
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 07 2018
STATUS
approved