login
A322428
Sum T(n,k) of k-th largest parts of all compositions of n; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
4
1, 3, 1, 8, 3, 1, 19, 8, 4, 1, 43, 20, 11, 5, 1, 94, 48, 27, 16, 6, 1, 202, 110, 64, 42, 22, 7, 1, 428, 245, 149, 100, 64, 29, 8, 1, 899, 533, 341, 228, 163, 93, 37, 9, 1, 1875, 1142, 765, 512, 383, 256, 130, 46, 10, 1, 3890, 2420, 1683, 1144, 859, 638, 386, 176, 56, 11, 1
OFFSET
1,2
LINKS
EXAMPLE
The 4 compositions of 3 are: 111, 12, 21, 3. The sums of k-th largest parts for k=1..3 give: 1+2+2+3 = 8, 1+1+1+0 = 3, 1+0+0+0 = 1.
Triangle T(n,k) begins:
1;
3, 1;
8, 3, 1;
19, 8, 4, 1;
43, 20, 11, 5, 1;
94, 48, 27, 16, 6, 1;
202, 110, 64, 42, 22, 7, 1;
428, 245, 149, 100, 64, 29, 8, 1;
899, 533, 341, 228, 163, 93, 37, 9, 1;
1875, 1142, 765, 512, 383, 256, 130, 46, 10, 1;
...
MAPLE
b:= proc(n, l) option remember; `if`(n=0, add(l[-i]*x^i,
i=1..nops(l)), add(b(n-j, sort([l[], j])), j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n, [])):
seq(T(n), n=1..12);
MATHEMATICA
b[n_, l_] := b[n, l] = If[n == 0, Sum[l[[-i]] x^i, {i, 1, Length[l]}], Sum[b[n - j, Sort[Append[l, j]]], {j, 1, n}]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, Exponent[p, x]}]][ b[n, {}]];
Array[T, 12] // Flatten (* Jean-François Alcover, Dec 29 2018, after Alois P. Heinz *)
CROSSREFS
Column k=1 gives A102712.
Row sums give A001787.
T(n+1,1+ceiling(n/2)) gives A027306.
Cf. A322427.
Sequence in context: A352939 A249757 A207609 * A130300 A366873 A345656
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Dec 07 2018
STATUS
approved