login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322428
Sum T(n,k) of k-th largest parts of all compositions of n; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
4
1, 3, 1, 8, 3, 1, 19, 8, 4, 1, 43, 20, 11, 5, 1, 94, 48, 27, 16, 6, 1, 202, 110, 64, 42, 22, 7, 1, 428, 245, 149, 100, 64, 29, 8, 1, 899, 533, 341, 228, 163, 93, 37, 9, 1, 1875, 1142, 765, 512, 383, 256, 130, 46, 10, 1, 3890, 2420, 1683, 1144, 859, 638, 386, 176, 56, 11, 1
OFFSET
1,2
LINKS
EXAMPLE
The 4 compositions of 3 are: 111, 12, 21, 3. The sums of k-th largest parts for k=1..3 give: 1+2+2+3 = 8, 1+1+1+0 = 3, 1+0+0+0 = 1.
Triangle T(n,k) begins:
1;
3, 1;
8, 3, 1;
19, 8, 4, 1;
43, 20, 11, 5, 1;
94, 48, 27, 16, 6, 1;
202, 110, 64, 42, 22, 7, 1;
428, 245, 149, 100, 64, 29, 8, 1;
899, 533, 341, 228, 163, 93, 37, 9, 1;
1875, 1142, 765, 512, 383, 256, 130, 46, 10, 1;
...
MAPLE
b:= proc(n, l) option remember; `if`(n=0, add(l[-i]*x^i,
i=1..nops(l)), add(b(n-j, sort([l[], j])), j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n, [])):
seq(T(n), n=1..12);
MATHEMATICA
b[n_, l_] := b[n, l] = If[n == 0, Sum[l[[-i]] x^i, {i, 1, Length[l]}], Sum[b[n - j, Sort[Append[l, j]]], {j, 1, n}]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, Exponent[p, x]}]][ b[n, {}]];
Array[T, 12] // Flatten (* Jean-François Alcover, Dec 29 2018, after Alois P. Heinz *)
CROSSREFS
Column k=1 gives A102712.
Row sums give A001787.
T(n+1,1+ceiling(n/2)) gives A027306.
Cf. A322427.
Sequence in context: A352939 A249757 A207609 * A130300 A366873 A345656
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Dec 07 2018
STATUS
approved