|
|
A322431
|
|
Numbers k such that the coefficient of x^k in the expansion of Product_{j>=1} (1-x^j)^10 is zero.
|
|
6
|
|
|
6, 13, 17, 27, 28, 34, 36, 39, 41, 48, 55, 59, 61, 62, 72, 74, 76, 82, 83, 90, 93, 94, 97, 104, 105, 111, 112, 116, 121, 125, 127, 128, 131, 132, 138, 139, 146, 149, 151, 152, 153, 160, 168, 169, 174, 181, 182, 183, 188, 193, 195, 197, 202, 204, 207, 209, 211, 214, 215
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Indices of zero entries in A010818.
|
|
LINKS
|
|
|
PROG
|
(PARI) my(x='x+O('x^300)); Vec(select(x->(x==0), Vec(eta(x)^10 - 1), 1)) \\ Michel Marcus, Dec 08 2018
|
|
CROSSREFS
|
Numbers k such that the coefficient of x^k in the expansion of Product_{j>=1} (1 - x^j)^m is zero: A090864 (m=1), A213250 (m=2), A014132 (m=3), A302056 (m=4), A302057 (m=5), A020757 (m=6), A322430 (m=8), this sequence (m=10), A322432 (m=14), A322043 (m=15), A322433 (m=26).
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|