login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249757
Triangular array of coefficients of polynomials p(n,x) = (x + 1)*p(n-1,x) + 2*n*x, p(0,x) = 1.
2
1, 1, 3, 1, 8, 3, 1, 15, 11, 3, 1, 24, 26, 14, 3, 1, 35, 50, 40, 17, 3, 1, 48, 85, 90, 57, 20, 3, 1, 63, 133, 175, 147, 77, 23, 3, 1, 80, 196, 308, 322, 224, 100, 26, 3, 1, 99, 276, 504, 630, 546, 324, 126, 29, 3, 1, 120, 375, 780, 1134, 1176, 870, 450, 155
OFFSET
0,3
COMMENTS
(Sum of numbers in row n) = A097809(n) for n >= 0.
LINKS
Clark Kimberling, Rows n = 0..100, flattened
EXAMPLE
p(0,x) = 1
p(1,x) = 1 + 3*x
p(2,x) = 1 + 8*x + 3*x^2
First 6 rows:
1
1 3
1 8 3
1 15 11 3
1 24 26 14 3
1 35 50 40 17 3
MATHEMATICA
z = 14; p[n_, x_] := (x + 1) p[n - 1, x] + 2*n*x; p[0, x_] = 1;
t = Table[Factor[p[n, x]], {n, 0, z}]
TableForm[Rest[Table[CoefficientList[t[[n]], x], {n, 0, z}]]] (* A249757 array *)
Flatten[CoefficientList[t, x]] (* A249757 sequence *)
CROSSREFS
KEYWORD
nonn,tabl,easy
AUTHOR
Clark Kimberling, Nov 07 2014
STATUS
approved