login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A207609
Triangle of coefficients of polynomials v(n,x) jointly generated with A207608; see Formula section.
3
1, 1, 3, 1, 8, 3, 1, 15, 17, 3, 1, 24, 54, 26, 3, 1, 35, 130, 120, 35, 3, 1, 48, 265, 398, 213, 44, 3, 1, 63, 483, 1071, 909, 333, 53, 3, 1, 80, 812, 2492, 3074, 1744, 480, 62, 3, 1, 99, 1284, 5208, 8802, 7138, 2984, 654, 71, 3, 1, 120, 1935, 10020, 22230, 24408, 14370, 4710, 855, 80, 3
OFFSET
1,3
COMMENTS
Subtriangle of the triangle given by (1, 0, 2/3, 1/3, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 3, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 03 2012
FORMULA
u(n,x)=u(n-1,x)+v(n-1,x),
v(n,x)=2x*u(n-1,x)+(x+1)v(n-1,x),
where u(1,x)=1, v(1,x)=1.
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) + T(n-2,k-1) - T(n-2,k), n>2. - Philippe Deléham, Mar 03 2012
Sum_{k, 0<=k<=n, n>=1} T(n,k)*x^k = A000012(n), A052156(n-1), A048876(n-1) for x = 0, 1, 2 respectively. - Philippe Deléham, Mar 03 2012
G.f.: -(1-x+2*x*y)*x*y/(-1+2*x+x*y+x^2*y-x^2). - R. J. Mathar, Aug 11 2015
EXAMPLE
First five rows:
1
1...3
1...8....3
1...15...17...3
1...24...54...26...3
Triangle (1, 0, 2/3, 1/3, 0, 0, 0, ...) DELTA (0, 3, -2, 0, 0, 0, ...) begins :
1
1, 0
1, 3, 0
1, 8, 3, 0
1, 15, 17, 3, 0
1, 24, 54, 26, 3, 0
1, 35, 130, 120, 35, 3, 0
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + v[n - 1, x]
v[n_, x_] := 2 x*u[n - 1, x] + (x + 1) v[n - 1, x]
Table[Factor[u[n, x]], {n, 1, z}]
Table[Factor[v[n, x]], {n, 1, z}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A207608 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A207609 *)
PROG
(Python)
from sympy import Poly
from sympy.abc import x
def u(n, x): return 1 if n==1 else u(n - 1, x) + v(n - 1, x)
def v(n, x): return 1 if n==1 else 2*x*u(n - 1, x) + (x + 1)*v(n - 1, x)
def a(n): return Poly(v(n, x), x).all_coeffs()[::-1]
for n in range(1, 13): print(a(n)) # Indranil Ghosh, May 28 2017
CROSSREFS
Cf. A207608.
Sequence in context: A049541 A352939 A249757 * A322428 A130300 A366873
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Feb 19 2012
STATUS
approved