OFFSET
0,2
COMMENTS
Generalized Pell equation with second term of 7.
LINKS
T. D. Noe, Table of n, a(n) for n = 0..200
M. Bicknell, A Primer on the Pell Sequence and related sequences, Fibonacci Quarterly, Vol. 13, No. 4, 1975, pp. 345-349.
L. Carlitz, R. Scoville and V. E. Hoggatt, Jr., Pellian Representations, Fib. Quart. Vol. 10, No. 5, (1972), pp. 449-488.
Tanya Khovanova, Recursive Sequences
A. K. Whitford, Binet's Formula Generalized, Fibonacci Quarterly, Vol. 15, No. 1, 1979, pp. 21, 24, 29.
Index entries for linear recurrences with constant coefficients, signature (4,1).
FORMULA
G.f.: (1+3*x)/(1-4*x-x^2). - Philippe Deléham, Nov 03 2008
a(n) = ((1+sqrt(5))*(2+sqrt(5))^n + (1-sqrt(5))*(2-sqrt(5))^n )/2.
a(n) = A000032(3*n+1). - Thomas Baruchel, Nov 26 2003
From Gary Detlefs, Mar 06 2011: (Start)
a(n) = Fibonacci(3*n+7) mod Fibonacci(3*n+3), n > 0.
a(n) = Fibonacci(3*n+3) - Fibonacci(3*n-1). (End)
a(n) = 5*F(2*n)*F(n+1) - L(n-1)*(-1)^n. - J. M. Bergot, Mar 22 2016
a(n) = Sum_{k=0..n} binomial(n,k)*5^floor((k+1)/2)*2^(n-k). - Tony Foster III, Sep 03 2017
MAPLE
with(combinat): a:=n->3*fibonacci(n-1, 4)+fibonacci(n, 4): seq(a(n), n=1..16); # Zerinvary Lajos, Apr 04 2008
MATHEMATICA
f[n_] := Block[{s = Sqrt@ 5}, Simplify[((1 + s)(2 + s)^n + (1 - s)(2 - s)^n)/2]]; (* Or *)
f[n_] := Fibonacci[3 n + 3] - Fibonacci[3 n - 1]; (* Or *)
f[n_] := Mod[ Fibonacci[3n + 7], Fibonacci[3n + 3]]; Array[f, 22, 0]
a[n_] := 4a[n - 1] + a[n - 2]; a[0] = 1; a[1] = 7; Array[a, 22, 0] (* Or *)
CoefficientList[ Series[(1 + 3x)/(1 - 4x - x^2), {x, 0, 21}], x] (* Robert G. Wilson v *)
LinearRecurrence[{4, 1}, {1, 7}, 30] (* Harvey P. Dale, Jun 13 2015 *)
Table[LucasL[3*n + 1], {n, 0, 20}] (* Rigoberto Florez, Apr 04 2019 *)
PROG
(PARI) Vec((1+3*x)/(1-4*x-x^2) + O(x^30)) \\ Altug Alkan, Oct 07 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
STATUS
approved