login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A048875 Generalized Pellian with second term of 6. 9
1, 6, 25, 106, 449, 1902, 8057, 34130, 144577, 612438, 2594329, 10989754, 46553345, 197203134, 835365881, 3538666658, 14990032513, 63498796710, 268985219353, 1139439674122, 4826743915841, 20446415337486, 86612405265785, 366896036400626, 1554196550868289 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

T. D. Noe, Table of n, a(n) for n=0..200

M. Bicknell, A Primer on the Pell Sequence and related sequences, Fibonacci Quarterly, Vol. 13, No. 4, 1975, pp. 345-349.

L. Carlitz, R. Scoville and V. E. Hoggatt, Jr., Pellian Representations, Fib. Quart. Vol. 10, No. 5, (1972), pp. 449-488.

Tanya Khovanova, Recursive Sequences

A. K. Whitford, Binet's Formula Generalized, Fibonacci Quarterly, Vol. 15, No. 1, 1979, pp. 21, 24, 29.

Index entries for linear recurrences with constant coefficients, signature (4,1).

FORMULA

a(n) = ((4+sqrt(5))(2+sqrt(5))^n - (4-sqrt(5))(2-sqrt(5))^n )/2*sqrt(5).

a(n) = 4a(n-1)+a(n-2); a(0)=1, a(1)=6.

Binomial transform of A134418: (1, 5, 14, 48, 152,...). - Gary W. Adamson, Nov 23 2007

G.f.: (1+2*x)/(1-4*x-x^2). - Philippe Deléham, Nov 03 2008

a(-1 - n) = (-1)^n * A097924(n) for all n in Z. - Michael Somos, Feb 23 2014

EXAMPLE

G.f. = 1 + 6*x + 25*x^2 + 106*x^3 + 449*x^4 + 1902*x^5 + 8057*x^6 + 34130*x^7 + ...

MAPLE

with(combinat): a:=n->2*fibonacci(n-1, 4)+fibonacci(n, 4): seq(a(n), n=1..17); # Zerinvary Lajos, Apr 04 2008

MATHEMATICA

LinearRecurrence[{4, 1}, {1, 6}, 40] (* Harvey P. Dale, Nov 30 2011 *)

a[ n_] := (4 I ChebyshevT[ n + 1, -2 I] - 3 ChebyshevT[ n, -2 I]) I^n / 5; (* Michael Somos, Feb 23 2014 *)

a[ n_] := If[ n < 0, SeriesCoefficient[ (1 + 6 x) / (1 + 4 x - x^2), {x, 0, -n}], SeriesCoefficient[ (1 + 2 x) / (1 - 4 x - x^2), {x, 0, n}]]; (* Michael Somos, Feb 23 2014 *)

PROG

(Maxima) a[0]:1$ a[1]:6$ a[n]:=4*a[n-1]+a[n-2]$ makelist(a[n], n, 0, 30); /* Martin Ettl, Nov 03 2012 */

(PARI) {a(n) = ( 4*I*polchebyshev( n+1, 1, -2*I) - 3*polchebyshev( n, 1, -2*I)) * I^n / 5}; /* Michael Somos, Feb 23 2014 */

(PARI) {a(n) = if( n<0, polcoeff( (1 + 6*x) / (1 + 4*x - x^2) + x * O(x^-n), -n), polcoeff( (1 + 2*x) / (1 - 4*x - x^2) + x * O(x^n), n))}; \\ Michael Somos, Feb 23 2014

CROSSREFS

Cf. A015448, A001076, A001077, A033887.

Cf. A134418.

Cf. A097924.

Sequence in context: A188178 A147543 A212258 * A094669 A100296 A120758

Adjacent sequences:  A048872 A048873 A048874 * A048876 A048877 A048878

KEYWORD

easy,nice,nonn

AUTHOR

Barry E. Williams

EXTENSIONS

Corrected by T. D. Noe, Nov 07 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified July 24 21:38 EDT 2017. Contains 289777 sequences.