|
|
A048878
|
|
Generalized Pellian with second term of 9.
|
|
4
|
|
|
1, 9, 37, 157, 665, 2817, 11933, 50549, 214129, 907065, 3842389, 16276621, 68948873, 292072113, 1237237325, 5241021413, 22201322977, 94046313321, 398386576261, 1687592618365, 7148757049721, 30282620817249
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Harry J. Smith, Table of n, a(n) for n = 0..1584
Tanya Khovanova, Recursive Sequences
Index entries for linear recurrences with constant coefficients, signature (4,1).
|
|
FORMULA
|
a(n) = ( (7+sqrt(5))(2+sqrt(5))^n - (7-sqrt(5))(2-sqrt(5))^n )/2*sqrt(5).
G.f.: (1+5*x)/(1-4*x-x^2). [Philippe Deléham, Nov 03 2008]
|
|
EXAMPLE
|
a(n) = 4a(n-1) + a(n-2); a(0)=1, a(1)=9.
|
|
MAPLE
|
with(combinat): a:=n->5*fibonacci(n-1, 4)+fibonacci(n, 4): seq(a(n), n=1..16); # Zerinvary Lajos, Apr 04 2008
|
|
MATHEMATICA
|
LinearRecurrence[{4, 1}, {1, 9}, 31] (* or *) CoefficientList[ Series[ (1+5x)/(1-4x-x^2), {x, 0, 30}], x] (* Harvey P. Dale, Jul 12 2011 *)
|
|
PROG
|
(PARI) { default(realprecision, 2000); for (n=0, 2000, a=round(((7+sqrt(5))*(2+sqrt(5))^n - (7-sqrt(5))*(2-sqrt(5))^n )/10*sqrt(5)); if (a > 10^(10^3 - 6), break); write("b048878.txt", n, " ", a); ); } \\ Harry J. Smith, May 31 2009
|
|
CROSSREFS
|
Cf. A015448, A001077, A001076, A033887.
Sequence in context: A257448 A288415 A026620 * A246315 A232250 A201441
Adjacent sequences: A048875 A048876 A048877 * A048879 A048880 A048881
|
|
KEYWORD
|
easy,nice,nonn
|
|
AUTHOR
|
Barry E. Williams
|
|
STATUS
|
approved
|
|
|
|