login
A147543
a(n) = (8*5^n + 5*3^(n+1) - 5*2^n)/3.
1
6, 25, 105, 455, 2045, 9495, 45205, 219055, 1074045, 5305895, 26335205, 131090655, 653692045, 3263166295, 16299929205, 81451898255, 407116166045, 2035150690695, 10174462707205, 50868440641855, 254330583216045
OFFSET
0,1
FORMULA
From R. J. Mathar, Nov 09 2008: (Start)
a(n)= 10*a(n-1) -31*a(n-2) +30*a(n-3).
a(n) = (8*5^n + 5*3^(n+1) - 5*2^n)/3.
G.f.: (6 - 35*x + 41*x^2)/((1-2*x)*(1-3*x)*(1-5*x)). (End)
E.g.f.: (1/3)*( 8*exp(5*x) + 15*exp(3*x) - 5*exp(2*x) ). - G. C. Greubel, Oct 28 2022
MATHEMATICA
LinearRecurrence[{10, -31, 30}, {6, 25, 105}, 31] (* G. C. Greubel, Oct 28 2022 *)
PROG
(Magma) [(8*5^n +5*3^(n+1) -5*2^n)/3: n in [0..30]]; // G. C. Greubel, Oct 28 2022
(SageMath) [(8*5^n +5*3^(n+1) -5*2^n)/3 for n in range(31)] # G. C. Greubel, Oct 28 2022
CROSSREFS
Sequence in context: A267536 A029871 A188178 * A212258 A048875 A295202
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Nov 06 2008
EXTENSIONS
Edited by G. C. Greubel, Oct 28 2022
STATUS
approved