login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A147541
Result of using the primes as coefficients in an infinite polynomial series in x and then expressing this series as (1+x)(1+a(1)*x)(1+a(2)*x^2) ... .
10
1, 2, 1, 3, 2, -4, 2, 5, 4, -6, 4, 4, 10, -36, 18, 45, 34, -72, 64, -24, 124, -358, 258, 170, 458, -1260, 916, 148, 1888, -4296, 3690, 887, 7272, -17616, 14718, -5096, 29610, -67164, 58722, -26036, 119602, -244496, 242256, -104754, 487352, -1029384
OFFSET
1,2
COMMENTS
This is the PPE (power product expansion) of A036467. - R. J. Mathar, Feb 01 2010
LINKS
H. Gingold, A note on reduction of operations via power product approximations, Utilitas Math. 37 (1990), 79-89. [From R. J. Mathar, Nov 10 2008]
H. Gingold and A. Knopfmacher, Analytic properties of power product expansions, Canad. J. Math. 47 (1995), 1219-1239. [From R. J. Mathar, Nov 10 2008]
H. Gingold, A. Knopfmacher and D. Lubinsky, The zero distribution of the partial products of power product expansions, Analysis 13 (1993), 133-157. [From R. J. Mathar, Nov 10 2008]
EXAMPLE
From the primes, construct the series 1+2x+3x^2+5x^3+7x^4+... Divide this by (1+x) to get the quotient (1+a(1)x+...), which here gives a(1)=1. Then divide this quotient by (1+a(1)x), i.e. here (1+x), to get (1+a(2)x^2+...), giving a(2)=2.
MAPLE
From R. J. Mathar, Feb 01 2010: (Start)
# Partition n into a set of distinct positive integers, the maximum one
# being m.
# Example: partitionsQ(7, 5) returns [[2, 5], [3, 4], [1, 2, 4]] ;
# Richard J. Mathar, 2008-11-10
partitionsQ := proc(n, m)
local p, t, rec, q;
p := [] ;
# take 't' of the n and recursively determine the partitions of
# what has been left over.
for t from min(m, n) to 1 by -1 do
# Since we are only considering partitions into distinct parts,
# the triangular numbers set a lower bound on the t.
if t*(t+1)/2 >= n then
rec := partitionsQ(n-t, t-1) ;
if nops(rec) = 0 then
p := [op(p), [t]] ;
else
for q in rec do
p := [op(p), [op(q), t]] ;
end do:
end if;
end if;
end do:
RETURN(p) ;
end proc:
# Power product expansion of L.
# L is a list starting with 1, which is considered L[0].
# Returns the list [a(1), a(2), ..] such that
# product_(i=1, 2, ..) (1+a(i)x^i) = sum_(j=0, 1, 2, ...) L[j]x^j.
# Richard J. Mathar, 2008-11-10
ppe := proc(L)
local pro, i, par, swithi, snoti, m, p, k ;
pro := [] ;
for i from 1 to nops(L)-1 do
par := partitionsQ(i, i) ;
swithi := 0 ;
snoti := 0 ;
for p in par do
if i in p then
m := 1 ;
for k from 1 to nops(p)-1 do
m := m*op(op(k, p), pro) ;
end do;
swithi := swithi+m ;
else
snoti := snoti+mul( op(k, pro), k=p) ;
end if;
end do:
pro := [op(pro), (op(i+1, L)-snoti)/swithi] ;
end do:
RETURN(pro) ;
end proc:
read("transforms") ;
A147541 := proc(nmax)
local L, L1, L2 ;
L := [1, seq(ithprime(n), n=1..nmax)] ;
L1 := [seq((-1)^n, n=0..nmax+10)] ;
A036467 := CONV(L, L1) ;
ppe(A036467) ;
end:
A147541(47) ;
(End)
CROSSREFS
Sequence in context: A106466 A130722 A308307 * A308308 A024162 A334677
KEYWORD
sign
AUTHOR
Neil Fernandez, Nov 06 2008
EXTENSIONS
Extended by R. J. Mathar, Feb 01 2010
STATUS
approved